Normalized defining polynomial
\( x^{16} - 1392 x^{14} - 6229112 x^{12} + 16501892048 x^{10} - 13391862498668 x^{8} + 3209410207612384 x^{6} + 400452722366707216 x^{4} - 100599134011721249248 x^{2} + 1645032138861793448324 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6767652375800250507037432977960083710388731904=2^{62}\cdot 1889^{5}\cdot 247007^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $731.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1889, 247007$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{16} a^{8} - \frac{1}{4} a^{4} + \frac{1}{8}$, $\frac{1}{16} a^{9} - \frac{1}{4} a^{5} + \frac{1}{8} a$, $\frac{1}{16} a^{10} - \frac{1}{4} a^{6} + \frac{1}{8} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{4} a^{7} + \frac{1}{8} a^{3}$, $\frac{1}{1057840} a^{12} + \frac{4633}{211568} a^{10} - \frac{6409}{264460} a^{8} - \frac{59541}{264460} a^{6} + \frac{26847}{75560} a^{4} - \frac{204627}{528920} a^{2} - \frac{16}{35}$, $\frac{1}{1057840} a^{13} + \frac{4633}{211568} a^{11} - \frac{6409}{264460} a^{9} - \frac{59541}{264460} a^{7} + \frac{26847}{75560} a^{5} - \frac{204627}{528920} a^{3} - \frac{16}{35} a$, $\frac{1}{21498544878603560384172608850316523177448355049822892777822169044179360} a^{14} + \frac{13405562509136194139451914727639109776796162687031162314640711}{38390258711792072114593944375565219959729205446112308531825301864606} a^{12} + \frac{54183503352358169565727840468416771539316310827837078493161974339253}{2687318109825445048021576106289565397181044381227861597227771130522420} a^{10} - \frac{68227462043869801982825500885480571288473691975341666942513244932951}{5374636219650890096043152212579130794362088762455723194455542261044840} a^{8} - \frac{79380943493682924192264808765870866001337950790509828832447374997351}{10749272439301780192086304425158261588724177524911446388911084522089680} a^{6} - \frac{6899704999127425264269307627244371862961472241557531766137715921989}{1343659054912722524010788053144782698590522190613930798613885565261210} a^{4} - \frac{224552454461456100415720359866235214910924236768305435417252671337}{1422614139664078903134767658173406774579695278574834090644664441780} a^{2} + \frac{29659270134592804375045480820103930218823902092267669191}{609783821445155119969656358822864613963964846999987006172}$, $\frac{1}{21498544878603560384172608850316523177448355049822892777822169044179360} a^{15} + \frac{13405562509136194139451914727639109776796162687031162314640711}{38390258711792072114593944375565219959729205446112308531825301864606} a^{13} + \frac{54183503352358169565727840468416771539316310827837078493161974339253}{2687318109825445048021576106289565397181044381227861597227771130522420} a^{11} - \frac{68227462043869801982825500885480571288473691975341666942513244932951}{5374636219650890096043152212579130794362088762455723194455542261044840} a^{9} - \frac{79380943493682924192264808765870866001337950790509828832447374997351}{10749272439301780192086304425158261588724177524911446388911084522089680} a^{7} - \frac{6899704999127425264269307627244371862961472241557531766137715921989}{1343659054912722524010788053144782698590522190613930798613885565261210} a^{5} - \frac{224552454461456100415720359866235214910924236768305435417252671337}{1422614139664078903134767658173406774579695278574834090644664441780} a^{3} + \frac{29659270134592804375045480820103930218823902092267669191}{609783821445155119969656358822864613963964846999987006172} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76340361025200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 46 conjugacy class representatives for t16n1186 |
| Character table for t16n1186 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.36 | $x^{8} + 12 x^{4} + 2$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ |
| 2.8.31.36 | $x^{8} + 12 x^{4} + 2$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ | |
| 1889 | Data not computed | ||||||
| 247007 | Data not computed | ||||||