Normalized defining polynomial
\( x^{16} - 4896 x^{14} + 7689860 x^{12} - 3409772064 x^{10} - 1266129331670 x^{8} + 1040831008579456 x^{6} - 88192020563282736 x^{4} - 42597270982345604736 x^{2} + 6580128555447173793296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6767652375800250507037432977960083710388731904=2^{62}\cdot 1889^{5}\cdot 247007^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $731.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1889, 247007$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{7556} a^{12} - \frac{559}{3778} a^{10} + \frac{815}{3778} a^{8} + \frac{347}{1889} a^{6} - \frac{483}{3778} a^{4} + \frac{378}{1889} a^{2}$, $\frac{1}{7556} a^{13} + \frac{771}{7556} a^{11} + \frac{815}{3778} a^{9} + \frac{347}{1889} a^{7} - \frac{483}{3778} a^{5} - \frac{1133}{3778} a^{3}$, $\frac{1}{1752824110048538223526679021636870587301906842757798574078896601998984} a^{14} - \frac{10332021034322558601513322469643447485825115327174946745955235980}{219103013756067277940834877704608823412738355344724821759862075249873} a^{12} - \frac{19614501967464717770711531401065596777553239939394193803344894477228}{219103013756067277940834877704608823412738355344724821759862075249873} a^{10} + \frac{26949501129012459358078670352393022069329310305958711339375032753927}{219103013756067277940834877704608823412738355344724821759862075249873} a^{8} - \frac{158309104086738647000132990134624719998057042779886111307578714477571}{876412055024269111763339510818435293650953421378899287039448300999492} a^{6} + \frac{2398819211596539282724755708485501588894295359885017948750177537416}{219103013756067277940834877704608823412738355344724821759862075249873} a^{4} + \frac{48399784621783814894815480533493708938930622726550331378709101994}{115988890289077436707694482638755332669527980595407528724119679857} a^{2} - \frac{684310526905177650482520496621900736910270045802028058}{248585146153395752429171469394331836821422321276285874959}$, $\frac{1}{1752824110048538223526679021636870587301906842757798574078896601998984} a^{15} - \frac{10332021034322558601513322469643447485825115327174946745955235980}{219103013756067277940834877704608823412738355344724821759862075249873} a^{13} - \frac{19614501967464717770711531401065596777553239939394193803344894477228}{219103013756067277940834877704608823412738355344724821759862075249873} a^{11} + \frac{26949501129012459358078670352393022069329310305958711339375032753927}{219103013756067277940834877704608823412738355344724821759862075249873} a^{9} - \frac{158309104086738647000132990134624719998057042779886111307578714477571}{876412055024269111763339510818435293650953421378899287039448300999492} a^{7} + \frac{2398819211596539282724755708485501588894295359885017948750177537416}{219103013756067277940834877704608823412738355344724821759862075249873} a^{5} + \frac{48399784621783814894815480533493708938930622726550331378709101994}{115988890289077436707694482638755332669527980595407528724119679857} a^{3} - \frac{684310526905177650482520496621900736910270045802028058}{248585146153395752429171469394331836821422321276285874959} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70498197375200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 46 conjugacy class representatives for t16n1186 |
| Character table for t16n1186 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.36 | $x^{8} + 12 x^{4} + 2$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ |
| 2.8.31.36 | $x^{8} + 12 x^{4} + 2$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ | |
| 1889 | Data not computed | ||||||
| 247007 | Data not computed | ||||||