Normalized defining polynomial
\( x^{16} - 3 x^{15} - 39 x^{14} + 85 x^{13} + 146 x^{12} + 676 x^{11} + 7986 x^{10} - 30713 x^{9} - 64431 x^{8} + 96157 x^{7} - 253495 x^{6} + 1354110 x^{5} + 3223597 x^{4} - 4349716 x^{3} - 9123536 x^{2} - 2980192 x - 161632 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66814405147552869881269516352=2^{6}\cdot 43^{6}\cdot 2777^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{36} a^{14} - \frac{1}{4} a^{13} + \frac{11}{36} a^{12} - \frac{17}{36} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{8} + \frac{7}{36} a^{7} + \frac{5}{12} a^{6} - \frac{1}{4} a^{5} + \frac{11}{36} a^{4} + \frac{1}{3} a^{3} + \frac{5}{36} a^{2} + \frac{7}{18} a - \frac{4}{9}$, $\frac{1}{66551763182907880298996402042327184185016456943128} a^{15} - \frac{8565847516396146609782943561398982167933501561}{646133623135027964067926233420652273640936475176} a^{14} - \frac{7091441860243831129478106875505169886035857499663}{66551763182907880298996402042327184185016456943128} a^{13} + \frac{4695785942027227911617783671163572131356712911927}{22183921060969293432998800680775728061672152314376} a^{12} + \frac{25925964848379024214578359916024480780208430669}{899348151120376760797248676247664651148871039772} a^{11} + \frac{668303934434937544841614795459847285164190585117}{2772990132621161679124850085096966007709019039297} a^{10} - \frac{4132017225395391723914765233224000515414160972241}{11091960530484646716499400340387864030836076157188} a^{9} + \frac{11160708596748879814479797728582626362268248309887}{66551763182907880298996402042327184185016456943128} a^{8} - \frac{19062823681336234930515928389388377961234715342003}{66551763182907880298996402042327184185016456943128} a^{7} - \frac{6618974453539789761171659766120887804117660096281}{22183921060969293432998800680775728061672152314376} a^{6} + \frac{21949044428037024546001733938449682546278989310281}{66551763182907880298996402042327184185016456943128} a^{5} + \frac{10935761035405268866726239477209111663682552300127}{33275881591453940149498201021163592092508228471564} a^{4} - \frac{1144838170696108448782654852005118403927569663831}{66551763182907880298996402042327184185016456943128} a^{3} + \frac{3405850139280508262152894442447001679526686621724}{8318970397863485037374550255290898023127057117891} a^{2} - \frac{8096520832390515744340142963493709415240776682327}{16637940795726970074749100510581796046254114235782} a + \frac{1931134178880725364023177337412520597008466148349}{8318970397863485037374550255290898023127057117891}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1118530147.39 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49152 |
| The 104 conjugacy class representatives for t16n1847 are not computed |
| Character table for t16n1847 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||