Properties

Label 16.12.6464021959...8125.1
Degree $16$
Signature $[12, 2]$
Discriminant $5^{8}\cdot 29^{8}\cdot 149^{3}$
Root discriminant $30.77$
Ramified primes $5, 29, 149$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1461

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-521, -609, 4895, -2643, -5983, 7439, -3040, -1256, 3252, -1669, -216, 429, -160, 29, 10, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 + 10*x^14 + 29*x^13 - 160*x^12 + 429*x^11 - 216*x^10 - 1669*x^9 + 3252*x^8 - 1256*x^7 - 3040*x^6 + 7439*x^5 - 5983*x^4 - 2643*x^3 + 4895*x^2 - 609*x - 521)
 
gp: K = bnfinit(x^16 - 7*x^15 + 10*x^14 + 29*x^13 - 160*x^12 + 429*x^11 - 216*x^10 - 1669*x^9 + 3252*x^8 - 1256*x^7 - 3040*x^6 + 7439*x^5 - 5983*x^4 - 2643*x^3 + 4895*x^2 - 609*x - 521, 1)
 

Normalized defining polynomial

\( x^{16} - 7 x^{15} + 10 x^{14} + 29 x^{13} - 160 x^{12} + 429 x^{11} - 216 x^{10} - 1669 x^{9} + 3252 x^{8} - 1256 x^{7} - 3040 x^{6} + 7439 x^{5} - 5983 x^{4} - 2643 x^{3} + 4895 x^{2} - 609 x - 521 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(646402195901533980078125=5^{8}\cdot 29^{8}\cdot 149^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.77$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 149$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{15} a^{14} + \frac{2}{5} a^{13} + \frac{2}{15} a^{12} + \frac{4}{15} a^{11} + \frac{1}{3} a^{10} - \frac{1}{15} a^{8} - \frac{2}{15} a^{7} - \frac{1}{5} a^{6} + \frac{2}{15} a^{5} + \frac{4}{15} a^{4} - \frac{1}{15} a^{3} + \frac{1}{3} a^{2} - \frac{2}{15} a - \frac{1}{15}$, $\frac{1}{38729417414732147428969665} a^{15} + \frac{204617899348842842467631}{12909805804910715809656555} a^{14} - \frac{12646560581306569848060931}{38729417414732147428969665} a^{13} + \frac{10226575996132685428751083}{38729417414732147428969665} a^{12} - \frac{8733787861184941426760197}{38729417414732147428969665} a^{11} + \frac{423471563843656172175101}{2581961160982143161931311} a^{10} + \frac{9383940980042077248881594}{38729417414732147428969665} a^{9} + \frac{18918755189372246064737866}{38729417414732147428969665} a^{8} + \frac{5114311734789561000111136}{12909805804910715809656555} a^{7} + \frac{1532302599052315659890168}{5532773916390306775567095} a^{6} + \frac{3728015861284793732302108}{38729417414732147428969665} a^{5} + \frac{7779913424828365438533212}{38729417414732147428969665} a^{4} - \frac{13787630463681463310880457}{38729417414732147428969665} a^{3} - \frac{13553088506589907259042897}{38729417414732147428969665} a^{2} - \frac{5077175089950853814432}{18938590422851905833237} a - \frac{5121445388609243221845834}{12909805804910715809656555}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1828805.32045 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1461:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1461 are not computed
Character table for t16n1461 is not computed

Intermediate fields

\(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
149Data not computed