Properties

Label 16.12.6185767004...0000.1
Degree $16$
Signature $[12, 2]$
Discriminant $2^{16}\cdot 5^{10}\cdot 29^{8}\cdot 139^{2}$
Root discriminant $54.57$
Ramified primes $2, 5, 29, 139$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T984

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![483025, 0, -764500, 0, 329820, 0, 2600, 0, -21159, 0, 1962, 0, 279, 0, -37, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 37*x^14 + 279*x^12 + 1962*x^10 - 21159*x^8 + 2600*x^6 + 329820*x^4 - 764500*x^2 + 483025)
 
gp: K = bnfinit(x^16 - 37*x^14 + 279*x^12 + 1962*x^10 - 21159*x^8 + 2600*x^6 + 329820*x^4 - 764500*x^2 + 483025, 1)
 

Normalized defining polynomial

\( x^{16} - 37 x^{14} + 279 x^{12} + 1962 x^{10} - 21159 x^{8} + 2600 x^{6} + 329820 x^{4} - 764500 x^{2} + 483025 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6185767004684467840000000000=2^{16}\cdot 5^{10}\cdot 29^{8}\cdot 139^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $54.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 139$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{6} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} - \frac{1}{5} a^{5}$, $\frac{1}{35} a^{12} + \frac{1}{35} a^{10} + \frac{1}{35} a^{8} + \frac{4}{35} a^{6} + \frac{6}{35} a^{4} + \frac{2}{7} a^{2} - \frac{2}{7}$, $\frac{1}{35} a^{13} + \frac{1}{35} a^{11} + \frac{1}{35} a^{9} + \frac{4}{35} a^{7} + \frac{6}{35} a^{5} + \frac{2}{7} a^{3} - \frac{2}{7} a$, $\frac{1}{161523149664066575} a^{14} + \frac{157012202527856}{14683922696733325} a^{12} + \frac{13527453583840772}{161523149664066575} a^{10} + \frac{834987712620762}{8501218403371925} a^{8} + \frac{373778445169590}{6460925986562663} a^{6} + \frac{14055819288957473}{32304629932813315} a^{4} - \frac{219997892209576}{922989426651809} a^{2} + \frac{12055980263900}{46481481917717}$, $\frac{1}{161523149664066575} a^{15} + \frac{157012202527856}{14683922696733325} a^{13} + \frac{13527453583840772}{161523149664066575} a^{11} + \frac{834987712620762}{8501218403371925} a^{9} + \frac{373778445169590}{6460925986562663} a^{7} + \frac{14055819288957473}{32304629932813315} a^{5} - \frac{219997892209576}{922989426651809} a^{3} + \frac{12055980263900}{46481481917717} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 166950898.229 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T984:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 38 conjugacy class representatives for t16n984
Character table for t16n984 is not computed

Intermediate fields

\(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.5$x^{8} + 2 x^{7} + 8 x^{2} + 16$$2$$4$$8$$C_8:C_2$$[2, 2]^{4}$
2.8.8.6$x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$$2$$4$$8$$(C_8:C_2):C_2$$[2, 2, 2]^{4}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$139$$\Q_{139}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{139}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{139}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{139}$$x + 4$$1$$1$$0$Trivial$[\ ]$
139.2.1.1$x^{2} - 139$$2$$1$$1$$C_2$$[\ ]_{2}$
139.2.1.1$x^{2} - 139$$2$$1$$1$$C_2$$[\ ]_{2}$
139.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
139.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
139.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
139.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$