Normalized defining polynomial
\( x^{16} - 8 x^{15} + 18 x^{14} + 14 x^{13} - 115 x^{12} + 144 x^{11} + 33 x^{10} - 198 x^{9} + 226 x^{8} - 420 x^{7} + 455 x^{6} + 110 x^{5} - 380 x^{4} + 50 x^{3} + 80 x^{2} - 10 x - 5 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58264304400000000000000=2^{16}\cdot 3^{8}\cdot 5^{14}\cdot 149^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{149} a^{12} - \frac{6}{149} a^{11} - \frac{58}{149} a^{10} + \frac{47}{149} a^{9} + \frac{10}{149} a^{8} + \frac{59}{149} a^{7} + \frac{48}{149} a^{6} + \frac{47}{149} a^{5} - \frac{30}{149} a^{4} - \frac{2}{149} a^{3} - \frac{40}{149} a^{2} + \frac{73}{149} a - \frac{30}{149}$, $\frac{1}{149} a^{13} + \frac{55}{149} a^{11} - \frac{3}{149} a^{10} - \frac{6}{149} a^{9} - \frac{30}{149} a^{8} - \frac{45}{149} a^{7} + \frac{37}{149} a^{6} - \frac{46}{149} a^{5} - \frac{33}{149} a^{4} - \frac{52}{149} a^{3} - \frac{18}{149} a^{2} - \frac{39}{149} a - \frac{31}{149}$, $\frac{1}{15049} a^{14} - \frac{7}{15049} a^{13} - \frac{40}{15049} a^{12} + \frac{331}{15049} a^{11} - \frac{4309}{15049} a^{10} + \frac{3295}{15049} a^{9} + \frac{1897}{15049} a^{8} + \frac{6667}{15049} a^{7} - \frac{5014}{15049} a^{6} + \frac{4615}{15049} a^{5} + \frac{5860}{15049} a^{4} + \frac{3814}{15049} a^{3} + \frac{6867}{15049} a^{2} + \frac{6121}{15049} a - \frac{6171}{15049}$, $\frac{1}{15049} a^{15} + \frac{12}{15049} a^{13} - \frac{50}{15049} a^{12} + \frac{4169}{15049} a^{11} - \frac{6264}{15049} a^{10} + \frac{4560}{15049} a^{9} + \frac{857}{15049} a^{8} + \frac{1053}{15049} a^{7} - \frac{1496}{15049} a^{6} - \frac{1326}{15049} a^{5} - \frac{616}{15049} a^{4} - \frac{1583}{15049} a^{3} - \frac{3784}{15049} a^{2} - \frac{4734}{15049} a + \frac{1849}{15049}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 777968.348027 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8192 |
| The 116 conjugacy class representatives for t16n1720 are not computed |
| Character table for t16n1720 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 8.6.1620000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 149 | Data not computed | ||||||