Normalized defining polynomial
\( x^{16} - 7 x^{15} + 15 x^{14} - 20 x^{13} - 13 x^{12} + 414 x^{11} - 1062 x^{10} + 1093 x^{9} + 339 x^{8} - 8748 x^{7} + 8417 x^{6} + 17904 x^{5} - 11054 x^{4} - 15255 x^{3} + 1997 x^{2} + 4551 x + 919 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57681033264163530732453953=17^{15}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{14608390064245717801811298107} a^{15} + \frac{5601526280458794897379425746}{14608390064245717801811298107} a^{14} - \frac{6910788647119937987323214189}{14608390064245717801811298107} a^{13} - \frac{2170825422349634433209753274}{14608390064245717801811298107} a^{12} + \frac{964522234518397425339984703}{14608390064245717801811298107} a^{11} - \frac{193393549967476822941436540}{14608390064245717801811298107} a^{10} + \frac{1663385824139108149053622075}{14608390064245717801811298107} a^{9} - \frac{7074163327891958476570869324}{14608390064245717801811298107} a^{8} + \frac{5154258898851696978582648795}{14608390064245717801811298107} a^{7} - \frac{6739908207008497541525953847}{14608390064245717801811298107} a^{6} - \frac{551792358163178325694651149}{14608390064245717801811298107} a^{5} + \frac{7281134360442503288688538778}{14608390064245717801811298107} a^{4} + \frac{5825060019043657671013596192}{14608390064245717801811298107} a^{3} + \frac{6369659658897645395941617851}{14608390064245717801811298107} a^{2} - \frac{3025056615446441594118764891}{14608390064245717801811298107} a - \frac{7161571655379962894122315680}{14608390064245717801811298107}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13552105.3628 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||