Properties

Label 16.12.5768103326...3953.2
Degree $16$
Signature $[12, 2]$
Discriminant $17^{15}\cdot 67^{4}$
Root discriminant $40.74$
Ramified primes $17, 67$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1223

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-13633, -11312, 15366, 7222, 8351, 2114, -17586, 2895, 3110, -758, 1549, -1068, -72, 181, -26, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 - 26*x^14 + 181*x^13 - 72*x^12 - 1068*x^11 + 1549*x^10 - 758*x^9 + 3110*x^8 + 2895*x^7 - 17586*x^6 + 2114*x^5 + 8351*x^4 + 7222*x^3 + 15366*x^2 - 11312*x - 13633)
 
gp: K = bnfinit(x^16 - 5*x^15 - 26*x^14 + 181*x^13 - 72*x^12 - 1068*x^11 + 1549*x^10 - 758*x^9 + 3110*x^8 + 2895*x^7 - 17586*x^6 + 2114*x^5 + 8351*x^4 + 7222*x^3 + 15366*x^2 - 11312*x - 13633, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} - 26 x^{14} + 181 x^{13} - 72 x^{12} - 1068 x^{11} + 1549 x^{10} - 758 x^{9} + 3110 x^{8} + 2895 x^{7} - 17586 x^{6} + 2114 x^{5} + 8351 x^{4} + 7222 x^{3} + 15366 x^{2} - 11312 x - 13633 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(57681033264163530732453953=17^{15}\cdot 67^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.74$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{26} a^{14} + \frac{1}{13} a^{13} + \frac{2}{13} a^{12} + \frac{7}{26} a^{11} + \frac{1}{13} a^{10} - \frac{3}{13} a^{9} + \frac{5}{26} a^{8} - \frac{4}{13} a^{6} + \frac{5}{26} a^{5} - \frac{6}{13} a^{4} + \frac{2}{13} a^{3} - \frac{3}{26} a^{2} - \frac{1}{13} a - \frac{5}{13}$, $\frac{1}{8002076039754310922434036946} a^{15} - \frac{75483090416829739734097595}{8002076039754310922434036946} a^{14} + \frac{574627329488879016496071884}{4001038019877155461217018473} a^{13} - \frac{40343629039637792901868832}{307772155375165804709001421} a^{12} - \frac{1463911087615093821061548873}{8002076039754310922434036946} a^{11} - \frac{763452257057443541305515455}{4001038019877155461217018473} a^{10} + \frac{1625339089402439559842114952}{4001038019877155461217018473} a^{9} - \frac{34012538306727567729871893}{170256937016049168562426318} a^{8} - \frac{1772096940085878013776778939}{4001038019877155461217018473} a^{7} + \frac{494574263015148829743079840}{4001038019877155461217018473} a^{6} - \frac{1241561405401108607383281543}{8002076039754310922434036946} a^{5} + \frac{660970893946703334946746749}{4001038019877155461217018473} a^{4} - \frac{1426453352995778632714592434}{4001038019877155461217018473} a^{3} + \frac{186306326623286965995688483}{615544310750331609418002842} a^{2} + \frac{114319318828094253142148949}{307772155375165804709001421} a - \frac{3561087921049953562387197171}{8002076039754310922434036946}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 18410677.3337 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1223:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 40 conjugacy class representatives for t16n1223
Character table for t16n1223 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ $16$ $16$ $16$ $16$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ $16$ $16$ $16$ $16$ $16$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
17Data not computed
67Data not computed