Normalized defining polynomial
\( x^{16} - 5 x^{15} - 26 x^{14} + 181 x^{13} - 72 x^{12} - 1068 x^{11} + 1549 x^{10} - 758 x^{9} + 3110 x^{8} + 2895 x^{7} - 17586 x^{6} + 2114 x^{5} + 8351 x^{4} + 7222 x^{3} + 15366 x^{2} - 11312 x - 13633 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57681033264163530732453953=17^{15}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{26} a^{14} + \frac{1}{13} a^{13} + \frac{2}{13} a^{12} + \frac{7}{26} a^{11} + \frac{1}{13} a^{10} - \frac{3}{13} a^{9} + \frac{5}{26} a^{8} - \frac{4}{13} a^{6} + \frac{5}{26} a^{5} - \frac{6}{13} a^{4} + \frac{2}{13} a^{3} - \frac{3}{26} a^{2} - \frac{1}{13} a - \frac{5}{13}$, $\frac{1}{8002076039754310922434036946} a^{15} - \frac{75483090416829739734097595}{8002076039754310922434036946} a^{14} + \frac{574627329488879016496071884}{4001038019877155461217018473} a^{13} - \frac{40343629039637792901868832}{307772155375165804709001421} a^{12} - \frac{1463911087615093821061548873}{8002076039754310922434036946} a^{11} - \frac{763452257057443541305515455}{4001038019877155461217018473} a^{10} + \frac{1625339089402439559842114952}{4001038019877155461217018473} a^{9} - \frac{34012538306727567729871893}{170256937016049168562426318} a^{8} - \frac{1772096940085878013776778939}{4001038019877155461217018473} a^{7} + \frac{494574263015148829743079840}{4001038019877155461217018473} a^{6} - \frac{1241561405401108607383281543}{8002076039754310922434036946} a^{5} + \frac{660970893946703334946746749}{4001038019877155461217018473} a^{4} - \frac{1426453352995778632714592434}{4001038019877155461217018473} a^{3} + \frac{186306326623286965995688483}{615544310750331609418002842} a^{2} + \frac{114319318828094253142148949}{307772155375165804709001421} a - \frac{3561087921049953562387197171}{8002076039754310922434036946}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18410677.3337 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||