Normalized defining polynomial
\( x^{16} - 2 x^{15} - x^{14} + 18 x^{13} - 719 x^{12} + 176 x^{11} + 9972 x^{10} + 1964 x^{9} - 41518 x^{8} - 28648 x^{7} + 25448 x^{6} + 50352 x^{5} + 45396 x^{4} - 54496 x^{3} - 20304 x^{2} + 9216 x + 2416 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(513620296716624855040000000000=2^{28}\cdot 5^{10}\cdot 241^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{180} a^{12} + \frac{2}{45} a^{11} - \frac{1}{36} a^{10} - \frac{1}{45} a^{9} + \frac{7}{180} a^{8} - \frac{7}{18} a^{7} + \frac{3}{10} a^{6} - \frac{1}{9} a^{5} + \frac{22}{45} a^{4} + \frac{13}{45} a^{3} - \frac{1}{9} a^{2} - \frac{14}{45} a + \frac{16}{45}$, $\frac{1}{540} a^{13} + \frac{1}{540} a^{12} - \frac{1}{540} a^{11} + \frac{31}{540} a^{10} + \frac{7}{108} a^{9} - \frac{29}{540} a^{8} + \frac{16}{135} a^{7} - \frac{47}{135} a^{6} - \frac{16}{45} a^{5} + \frac{31}{90} a^{4} + \frac{8}{45} a^{3} + \frac{22}{45} a^{2} + \frac{8}{45} a - \frac{37}{135}$, $\frac{1}{842400} a^{14} - \frac{1}{1200} a^{13} - \frac{803}{842400} a^{12} + \frac{961}{421200} a^{11} + \frac{70087}{842400} a^{10} - \frac{7271}{105300} a^{9} + \frac{5333}{140400} a^{8} + \frac{7}{24} a^{7} - \frac{145757}{421200} a^{6} + \frac{257}{900} a^{5} + \frac{4091}{23400} a^{4} + \frac{5801}{17550} a^{3} - \frac{14363}{70200} a^{2} + \frac{1601}{4050} a - \frac{33349}{105300}$, $\frac{1}{4145810606510573808475200} a^{15} - \frac{875187969979639}{19931781762070066386900} a^{14} - \frac{1492240866123821016863}{4145810606510573808475200} a^{13} - \frac{1379476775447667542461}{518226325813821726059400} a^{12} + \frac{2678272194750627242239}{78222841632274977518400} a^{11} - \frac{101839840491811776628459}{2072905303255286904237600} a^{10} + \frac{166452585312265104045059}{2072905303255286904237600} a^{9} + \frac{146651981554644340277}{2657570901609342184920} a^{8} + \frac{6019681946101038676811}{39111420816137488759200} a^{7} - \frac{37364604320488477624829}{79727127048280265547600} a^{6} + \frac{26016488691858939219331}{115161405736404828013200} a^{5} - \frac{62306482208126187833003}{172742108604607242019800} a^{4} + \frac{119221000088220675044597}{345484217209214484039600} a^{3} + \frac{2694587006479153765987}{39863563524140132773800} a^{2} + \frac{252184055778476462862451}{518226325813821726059400} a + \frac{776035493349881453473}{3986356352414013277380}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4913128294.03 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n869 |
| Character table for t16n869 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), 4.4.385600.1, 4.4.385600.2, \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.148687360000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 241 | Data not computed | ||||||