Normalized defining polynomial
\( x^{16} - 2 x^{15} - 57 x^{14} + 597 x^{13} - 1849 x^{12} - 13831 x^{11} + 49484 x^{10} + 54030 x^{9} + 721609 x^{8} - 44849 x^{7} - 15451735 x^{6} - 6174233 x^{5} + 59143279 x^{4} + 63277728 x^{3} + 7184468 x^{2} - 4996640 x - 352528 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50744262454554467455972799262367678441=11^{10}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $227.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{3}{16} a^{10} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} - \frac{7}{16} a^{7} + \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{7}{16} a^{4} - \frac{1}{8} a^{3} - \frac{5}{16} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{518368} a^{14} + \frac{4573}{259184} a^{13} - \frac{18939}{518368} a^{12} + \frac{367}{518368} a^{11} + \frac{41527}{518368} a^{10} - \frac{115185}{518368} a^{9} - \frac{2542}{16199} a^{8} - \frac{16447}{129592} a^{7} + \frac{1211}{5344} a^{6} + \frac{167293}{518368} a^{5} - \frac{207399}{518368} a^{4} - \frac{45559}{518368} a^{3} + \frac{118851}{518368} a^{2} + \frac{15755}{259184} a + \frac{42625}{129592}$, $\frac{1}{16031015189208118310640363914694765992446504359075008} a^{15} + \frac{7483159542996651574086657515537524388321777737}{8015507594604059155320181957347382996223252179537504} a^{14} + \frac{496756917775104701018583866254062575016199797253907}{16031015189208118310640363914694765992446504359075008} a^{13} - \frac{716868635603514039014302215717192150431790932999967}{16031015189208118310640363914694765992446504359075008} a^{12} - \frac{2237802184480237771812380228349747210123758487203545}{16031015189208118310640363914694765992446504359075008} a^{11} - \frac{3503763113712744851923975739081751052213699501773375}{16031015189208118310640363914694765992446504359075008} a^{10} + \frac{626310747888369558478448022607637894631284352825205}{4007753797302029577660090978673691498111626089768752} a^{9} - \frac{991599763649084150123046527889225113108885136615163}{8015507594604059155320181957347382996223252179537504} a^{8} + \frac{2946117387240839142725316068791401558277186195487}{95994102929389930003834514459250095763152720713024} a^{7} + \frac{856888660527673193578321714213694059795388169663867}{16031015189208118310640363914694765992446504359075008} a^{6} + \frac{6744527015367493674151435499854964242984768118042233}{16031015189208118310640363914694765992446504359075008} a^{5} - \frac{328481661524583926884884117253333069243393971472721}{16031015189208118310640363914694765992446504359075008} a^{4} + \frac{4786783942555787376475800312797964588880778968041223}{16031015189208118310640363914694765992446504359075008} a^{3} + \frac{88767532381272197361561475389360600576154630695062}{250484612331376848603755686167105718631976630610547} a^{2} + \frac{133998268764595569911047350582691787657206204288883}{2003876898651014788830045489336845749055813044884376} a + \frac{177424461028711729002371806661628647631404326347225}{2003876898651014788830045489336845749055813044884376}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70783447361700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.647590974205440089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 89 | Data not computed | ||||||