Properties

Label 16.12.4267831204...0000.1
Degree $16$
Signature $[12, 2]$
Discriminant $2^{24}\cdot 5^{8}\cdot 13^{4}\cdot 151^{2}$
Root discriminant $22.48$
Ramified primes $2, 5, 13, 151$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^6.C_2^2$ (as 16T528)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -6, 97, -196, -276, 1102, -606, -938, 1199, -246, -286, 258, -146, 48, 3, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 3*x^14 + 48*x^13 - 146*x^12 + 258*x^11 - 286*x^10 - 246*x^9 + 1199*x^8 - 938*x^7 - 606*x^6 + 1102*x^5 - 276*x^4 - 196*x^3 + 97*x^2 - 6*x - 1)
 
gp: K = bnfinit(x^16 - 6*x^15 + 3*x^14 + 48*x^13 - 146*x^12 + 258*x^11 - 286*x^10 - 246*x^9 + 1199*x^8 - 938*x^7 - 606*x^6 + 1102*x^5 - 276*x^4 - 196*x^3 + 97*x^2 - 6*x - 1, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 3 x^{14} + 48 x^{13} - 146 x^{12} + 258 x^{11} - 286 x^{10} - 246 x^{9} + 1199 x^{8} - 938 x^{7} - 606 x^{6} + 1102 x^{5} - 276 x^{4} - 196 x^{3} + 97 x^{2} - 6 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4267831204249600000000=2^{24}\cdot 5^{8}\cdot 13^{4}\cdot 151^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13, 151$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{3}{8} a^{8} + \frac{1}{4} a^{7} - \frac{3}{8} a^{6} - \frac{1}{4} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{3}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{2} a^{11} + \frac{3}{16} a^{10} - \frac{3}{16} a^{9} - \frac{1}{8} a^{8} - \frac{5}{16} a^{7} - \frac{3}{8} a^{6} + \frac{5}{16} a^{5} - \frac{1}{16} a^{4} - \frac{1}{4} a^{3} - \frac{3}{16} a^{2} - \frac{7}{16} a - \frac{1}{16}$, $\frac{1}{96603711728} a^{15} + \frac{1227010161}{96603711728} a^{14} + \frac{2438692917}{96603711728} a^{13} + \frac{61459047}{48301855864} a^{12} - \frac{39172580573}{96603711728} a^{11} + \frac{41469656787}{96603711728} a^{10} + \frac{882667494}{6037731983} a^{9} + \frac{1056868575}{96603711728} a^{8} - \frac{4046459533}{12075463966} a^{7} - \frac{10090023999}{96603711728} a^{6} - \frac{21406168671}{96603711728} a^{5} - \frac{7432425263}{48301855864} a^{4} + \frac{24920555877}{96603711728} a^{3} - \frac{11057394637}{96603711728} a^{2} - \frac{25754091207}{96603711728} a + \frac{12456979083}{48301855864}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 143578.674043 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^6.C_2^2$ (as 16T528):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 46 conjugacy class representatives for $C_2^6.C_2^2$
Character table for $C_2^6.C_2^2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.6.386560000.1, 8.8.432640000.1, 8.6.65328640000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$151$151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
151.4.2.1$x^{4} + 3473 x^{2} + 3283344$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$