Properties

Label 16.12.4044841757...0384.2
Degree $16$
Signature $[12, 2]$
Discriminant $2^{52}\cdot 3^{12}\cdot 13^{2}$
Root discriminant $29.88$
Ramified primes $2, 3, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T860

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, -160, -1484, -3592, -2812, 1928, 4492, 1600, -1460, -1272, -116, 264, 124, -16, -20, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 20*x^14 - 16*x^13 + 124*x^12 + 264*x^11 - 116*x^10 - 1272*x^9 - 1460*x^8 + 1600*x^7 + 4492*x^6 + 1928*x^5 - 2812*x^4 - 3592*x^3 - 1484*x^2 - 160*x + 25)
 
gp: K = bnfinit(x^16 - 20*x^14 - 16*x^13 + 124*x^12 + 264*x^11 - 116*x^10 - 1272*x^9 - 1460*x^8 + 1600*x^7 + 4492*x^6 + 1928*x^5 - 2812*x^4 - 3592*x^3 - 1484*x^2 - 160*x + 25, 1)
 

Normalized defining polynomial

\( x^{16} - 20 x^{14} - 16 x^{13} + 124 x^{12} + 264 x^{11} - 116 x^{10} - 1272 x^{9} - 1460 x^{8} + 1600 x^{7} + 4492 x^{6} + 1928 x^{5} - 2812 x^{4} - 3592 x^{3} - 1484 x^{2} - 160 x + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(404484175737229236240384=2^{52}\cdot 3^{12}\cdot 13^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{57} a^{13} - \frac{1}{19} a^{12} - \frac{3}{19} a^{10} - \frac{7}{57} a^{9} - \frac{4}{57} a^{8} - \frac{28}{57} a^{7} + \frac{9}{19} a^{6} + \frac{5}{57} a^{5} - \frac{17}{57} a^{4} - \frac{22}{57} a^{3} - \frac{7}{57} a^{2} + \frac{11}{57} a - \frac{22}{57}$, $\frac{1}{285} a^{14} - \frac{2}{285} a^{13} - \frac{41}{285} a^{12} - \frac{3}{95} a^{11} + \frac{22}{285} a^{10} - \frac{2}{19} a^{9} + \frac{44}{285} a^{8} - \frac{23}{57} a^{7} - \frac{5}{57} a^{6} + \frac{28}{57} a^{5} - \frac{58}{285} a^{4} + \frac{104}{285} a^{3} + \frac{16}{57} a^{2} - \frac{29}{95} a - \frac{4}{19}$, $\frac{1}{2494754625} a^{15} - \frac{40549}{498950925} a^{14} + \frac{3297731}{498950925} a^{13} + \frac{12091173}{75598625} a^{12} + \frac{203694769}{2494754625} a^{11} - \frac{60576872}{831584875} a^{10} - \frac{214879271}{2494754625} a^{9} + \frac{235457498}{2494754625} a^{8} + \frac{19814517}{166316975} a^{7} + \frac{4771310}{19958037} a^{6} - \frac{199488508}{2494754625} a^{5} + \frac{1123393138}{2494754625} a^{4} - \frac{243127822}{2494754625} a^{3} + \frac{135301898}{2494754625} a^{2} - \frac{818251369}{2494754625} a + \frac{80911363}{166316975}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2598220.05313 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T860:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 53 conjugacy class representatives for t16n860 are not computed
Character table for t16n860 is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), 4.4.13824.1 x2, 4.4.27648.1 x2, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.3057647616.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$13$13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.2.2$x^{4} - 13 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$