Normalized defining polynomial
\( x^{16} - 4 x^{15} - 284 x^{14} - 412 x^{13} + 20409 x^{12} + 244538 x^{11} + 1048841 x^{10} - 17262064 x^{9} - 159907014 x^{8} - 153576402 x^{7} + 4096332547 x^{6} + 43159964896 x^{5} + 45775819228 x^{4} - 1072055539736 x^{3} - 2159676870464 x^{2} + 5367379047776 x + 10463745523072 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(397286244885795491769071181517306466749106209=71^{10}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $612.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{32} a^{5} - \frac{3}{32} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{4544} a^{12} + \frac{7}{568} a^{11} + \frac{93}{4544} a^{10} - \frac{33}{1136} a^{9} + \frac{229}{2272} a^{8} + \frac{93}{2272} a^{7} - \frac{289}{4544} a^{6} - \frac{365}{2272} a^{5} - \frac{1}{64} a^{4} - \frac{383}{1136} a^{3} - \frac{13}{71} a^{2} - \frac{279}{568} a - \frac{31}{142}$, $\frac{1}{36352} a^{13} - \frac{1}{9088} a^{12} + \frac{567}{36352} a^{11} - \frac{797}{18176} a^{10} - \frac{3}{256} a^{9} + \frac{1831}{18176} a^{8} - \frac{1793}{36352} a^{7} + \frac{1063}{18176} a^{6} + \frac{8939}{36352} a^{5} - \frac{411}{18176} a^{4} + \frac{1943}{4544} a^{3} + \frac{1843}{4544} a^{2} + \frac{853}{2272} a - \frac{277}{568}$, $\frac{1}{34637428038656} a^{14} - \frac{138598303}{34637428038656} a^{13} + \frac{2358528651}{34637428038656} a^{12} - \frac{418549370743}{34637428038656} a^{11} - \frac{75507386245}{8659357009664} a^{10} - \frac{251916810977}{8659357009664} a^{9} + \frac{1382178228533}{34637428038656} a^{8} + \frac{1884957666873}{34637428038656} a^{7} - \frac{8024339465687}{34637428038656} a^{6} - \frac{522538868927}{34637428038656} a^{5} - \frac{2776691503791}{17318714019328} a^{4} + \frac{65627798305}{2164839252416} a^{3} + \frac{1835560490329}{4329678504832} a^{2} - \frac{237753947791}{2164839252416} a + \frac{165629981275}{541209813104}$, $\frac{1}{406558739862879005500172853196456659056426903093132462621483008} a^{15} + \frac{378761571954727787865257504471102697235510611733}{406558739862879005500172853196456659056426903093132462621483008} a^{14} - \frac{4077926849139687060829968762693999677844634432437178378375}{406558739862879005500172853196456659056426903093132462621483008} a^{13} + \frac{226026778894566219176192497075829309678972994538667113765}{2967582042794737266424619366397493861725743818198047172419584} a^{12} + \frac{1980586989021256553220435741496144145785390786438835634779307}{203279369931439502750086426598228329528213451546566231310741504} a^{11} - \frac{911019423837843925589970478547698188251203564069758816132037}{50819842482859875687521606649557082382053362886641557827685376} a^{10} - \frac{6666832272911004519515935509685619373823989051477968310132767}{406558739862879005500172853196456659056426903093132462621483008} a^{9} + \frac{38304562495168071810407800127759710307206013904632293406538569}{406558739862879005500172853196456659056426903093132462621483008} a^{8} + \frac{7010669771303536394046223274291047394960944652545556391303523}{406558739862879005500172853196456659056426903093132462621483008} a^{7} + \frac{36961749395094432756684210543396314146913836677576731646721809}{406558739862879005500172853196456659056426903093132462621483008} a^{6} - \frac{17838705732713111876579735915626929909934494836333690127182955}{101639684965719751375043213299114164764106725773283115655370752} a^{5} + \frac{441573051498014424812280002674297138520830208328057463073307}{2479016706480969545732761299978394262539188433494710137935872} a^{4} - \frac{11503096245988230860539139587331127396321136596260668625553153}{50819842482859875687521606649557082382053362886641557827685376} a^{3} + \frac{4241805195186786126359864662357690871461372988521456296758105}{12704960620714968921880401662389270595513340721660389456921344} a^{2} + \frac{3191234231782435299696267400590543699335177589176546282691221}{12704960620714968921880401662389270595513340721660389456921344} a - \frac{1120409786481169215634546484164004048167868885237451409240343}{3176240155178742230470100415597317648878335180415097364230336}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20044029886600000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.280732967047165372057.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $71$ | 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.4.3.2 | $x^{4} - 71$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 71.4.3.2 | $x^{4} - 71$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |