Normalized defining polynomial
\( x^{16} - 8 x^{15} - 194 x^{14} + 1498 x^{13} - 33949 x^{12} + 183856 x^{11} + 5923877 x^{10} - 31268076 x^{9} - 191000463 x^{8} + 953569804 x^{7} - 6328543931 x^{6} + 15514855228 x^{5} + 502985664539 x^{4} - 1030653409038 x^{3} - 10805487081588 x^{2} + 11323231138444 x + 80523074268737 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(364949574671621174049498480790687937724416=2^{24}\cdot 13^{8}\cdot 41^{3}\cdot 47^{4}\cdot 42961^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $395.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 41, 47, 42961$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{1761401} a^{12} - \frac{6}{1761401} a^{11} + \frac{880493}{1761401} a^{10} - \frac{879608}{1761401} a^{9} + \frac{518982}{1761401} a^{8} - \frac{321148}{1761401} a^{7} - \frac{725492}{1761401} a^{6} + \frac{663047}{1761401} a^{5} + \frac{351291}{1761401} a^{4} - \frac{423150}{1761401} a^{3} + \frac{494543}{1761401} a^{2} - \frac{13633}{42961} a + \frac{874092}{1761401}$, $\frac{1}{1761401} a^{13} + \frac{880457}{1761401} a^{11} + \frac{880548}{1761401} a^{10} + \frac{525537}{1761401} a^{9} - \frac{730058}{1761401} a^{8} + \frac{870422}{1761401} a^{7} - \frac{167103}{1761401} a^{6} + \frac{806771}{1761401} a^{5} - \frac{76805}{1761401} a^{4} - \frac{282956}{1761401} a^{3} + \frac{646904}{1761401} a^{2} - \frac{718225}{1761401} a - \frac{39651}{1761401}$, $\frac{1}{17750473466362995150364428733019304203924} a^{14} - \frac{1}{2535781923766142164337775533288472029132} a^{13} - \frac{89918534241001602741681540650911}{4437618366590748787591107183254826050981} a^{12} + \frac{2158044821784038465800356975621955}{17750473466362995150364428733019304203924} a^{11} - \frac{271958987409504677757051761483552464305}{1267890961883071082168887766644236014566} a^{10} + \frac{1286635870224799272276591400890425096005}{17750473466362995150364428733019304203924} a^{9} - \frac{367685877704718923233307260860169008836}{4437618366590748787591107183254826050981} a^{8} - \frac{1836817439580253237503508427653114592863}{17750473466362995150364428733019304203924} a^{7} + \frac{2238974889233549622401280603986451557961}{8875236733181497575182214366509652101962} a^{6} + \frac{1948953312853304946066041699284106129455}{17750473466362995150364428733019304203924} a^{5} - \frac{3218364901637324433746446561326875914465}{8875236733181497575182214366509652101962} a^{4} - \frac{6924658443161581451462949807591660656627}{17750473466362995150364428733019304203924} a^{3} + \frac{1328531892358409956883161833984180094263}{8875236733181497575182214366509652101962} a^{2} - \frac{7644702990427278609316696480656974138103}{17750473466362995150364428733019304203924} a + \frac{634411374269740111615669833085926477655}{17750473466362995150364428733019304203924}$, $\frac{1}{17750473466362995150364428733019304203924} a^{15} - \frac{359674136964006410966726162603693}{17750473466362995150364428733019304203924} a^{13} - \frac{359674136964006410966726162603553}{17750473466362995150364428733019304203924} a^{12} - \frac{543915816774187571475637722610129306655}{2535781923766142164337775533288472029132} a^{11} - \frac{7614871429543663997550052491478412201961}{17750473466362995150364428733019304203924} a^{10} + \frac{7535707580754719213002910762792299636691}{17750473466362995150364428733019304203924} a^{9} + \frac{5618451451050612062328317001281457363653}{17750473466362995150364428733019304203924} a^{8} - \frac{8379772298594673417721997785598899034119}{17750473466362995150364428733019304203924} a^{7} - \frac{2206345170602990641044887310944180466939}{17750473466362995150364428733019304203924} a^{6} + \frac{7205943386698485754969398772334991077255}{17750473466362995150364428733019304203924} a^{5} + \frac{1269653333004861927180084532889989152635}{17750473466362995150364428733019304203924} a^{4} + \frac{7435875081674735204618961213884648203909}{17750473466362995150364428733019304203924} a^{3} - \frac{6795729963772534363316859537897757022345}{17750473466362995150364428733019304203924} a^{2} + \frac{186455420183887648746040333772510061353}{8875236733181497575182214366509652101962} a + \frac{634411374269740111615669833085926477655}{2535781923766142164337775533288472029132}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2622536488780000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 24576 |
| The 88 conjugacy class representatives for t16n1806 are not computed |
| Character table for t16n1806 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 8.8.258421755904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 41.6.3.2 | $x^{6} - 1681 x^{2} + 895973$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $47$ | 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 42961 | Data not computed | ||||||