Normalized defining polynomial
\( x^{16} - 4 x^{15} - 16 x^{14} + 65 x^{13} + 97 x^{12} - 333 x^{11} - 211 x^{10} - 3 x^{9} - 601 x^{8} + 5676 x^{7} + 4109 x^{6} - 16107 x^{5} - 9109 x^{4} + 12503 x^{3} + 6343 x^{2} - 1082 x - 307 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3393001956715501807791409=17^{14}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{137} a^{14} - \frac{29}{137} a^{13} + \frac{20}{137} a^{12} - \frac{45}{137} a^{11} + \frac{46}{137} a^{10} + \frac{67}{137} a^{9} - \frac{15}{137} a^{8} - \frac{33}{137} a^{7} + \frac{10}{137} a^{6} - \frac{59}{137} a^{5} + \frac{64}{137} a^{4} + \frac{65}{137} a^{3} - \frac{30}{137} a^{2} - \frac{22}{137} a + \frac{26}{137}$, $\frac{1}{22107330172198577525701} a^{15} - \frac{4760593233771745845}{22107330172198577525701} a^{14} + \frac{10182947996648536112767}{22107330172198577525701} a^{13} - \frac{6132604297597166077511}{22107330172198577525701} a^{12} - \frac{8392459118004194646163}{22107330172198577525701} a^{11} + \frac{7142647086945175234398}{22107330172198577525701} a^{10} + \frac{4998274055035421808341}{22107330172198577525701} a^{9} - \frac{5598102165353341437934}{22107330172198577525701} a^{8} + \frac{5109806976296007861093}{22107330172198577525701} a^{7} - \frac{9926904905639002283050}{22107330172198577525701} a^{6} - \frac{7816278529214726678501}{22107330172198577525701} a^{5} + \frac{4479444602322790041628}{22107330172198577525701} a^{4} + \frac{10414525533999129540409}{22107330172198577525701} a^{3} + \frac{10740060647942950542456}{22107330172198577525701} a^{2} + \frac{2619344542001272424742}{22107330172198577525701} a - \frac{6946512992116101065108}{22107330172198577525701}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4112173.95016 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 67 | Data not computed | ||||||