Normalized defining polynomial
\( x^{16} - 4 x^{15} - 155 x^{14} + 888 x^{13} + 5075 x^{12} - 43896 x^{11} + 36738 x^{10} + 632968 x^{9} - 3133015 x^{8} + 1964046 x^{7} + 28711844 x^{6} - 68240968 x^{5} - 34040624 x^{4} + 174753904 x^{3} + 33715784 x^{2} - 157790396 x - 74218553 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31087867512274251337747808514764310961=31^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $220.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{62} a^{14} + \frac{13}{62} a^{13} - \frac{7}{31} a^{12} + \frac{13}{62} a^{11} - \frac{1}{62} a^{10} - \frac{3}{62} a^{9} + \frac{1}{62} a^{8} + \frac{19}{62} a^{7} - \frac{5}{62} a^{6} - \frac{7}{31} a^{5} - \frac{4}{31} a^{4} + \frac{3}{31} a^{3} + \frac{9}{62} a^{2} - \frac{13}{31} a - \frac{17}{62}$, $\frac{1}{317344167723211931371521157207086990700314275916781334} a^{15} + \frac{2528404937795409566286834344105209803460622458978937}{317344167723211931371521157207086990700314275916781334} a^{14} + \frac{4698328007251415054391204100211140093969558089541184}{158672083861605965685760578603543495350157137958390667} a^{13} - \frac{6374143424590217274686768219818679648452795107487776}{158672083861605965685760578603543495350157137958390667} a^{12} - \frac{2895214610399224309252869315739892392510450820147481}{13797572509704866581370485095960303943491925039860058} a^{11} - \frac{61894250748652230029158324751635216425321466353466631}{317344167723211931371521157207086990700314275916781334} a^{10} + \frac{36215999707588582856308911027944704844512025773941142}{158672083861605965685760578603543495350157137958390667} a^{9} - \frac{12159625495266430476525953231776722408296398153010717}{158672083861605965685760578603543495350157137958390667} a^{8} + \frac{77941084049570228532196926863295277369482605998692123}{158672083861605965685760578603543495350157137958390667} a^{7} + \frac{74774327976444977842475710571845983128719067484375338}{158672083861605965685760578603543495350157137958390667} a^{6} + \frac{18571425417009224790322480601926424764137121327226819}{158672083861605965685760578603543495350157137958390667} a^{5} + \frac{3182326296092480653352835579422301148540430077649523}{317344167723211931371521157207086990700314275916781334} a^{4} - \frac{30693419032808668079568587918313455377866868223187704}{158672083861605965685760578603543495350157137958390667} a^{3} + \frac{11831488646021613374019912942024864176141964612775001}{158672083861605965685760578603543495350157137958390667} a^{2} - \frac{4126409089854402335810048501416369468360523065750453}{317344167723211931371521157207086990700314275916781334} a - \frac{30087557890311076456430446503750912154028071893832862}{158672083861605965685760578603543495350157137958390667}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17427220933800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| 41 | Data not computed | ||||||