Normalized defining polynomial
\( x^{16} - 48 x^{14} - 32 x^{13} + 712 x^{12} + 784 x^{11} - 3720 x^{10} - 4496 x^{9} + 9130 x^{8} + 16800 x^{7} - 6384 x^{6} - 43664 x^{5} - 8852 x^{4} + 55360 x^{3} + 6616 x^{2} - 16400 x - 2686 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3007692940260731871482085376=2^{64}\cdot 113^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} + \frac{4}{17} a^{13} + \frac{7}{17} a^{12} - \frac{1}{17} a^{11} - \frac{5}{17} a^{10} - \frac{6}{17} a^{9} + \frac{5}{17} a^{8} - \frac{1}{17} a^{7} + \frac{5}{17} a^{6} + \frac{2}{17} a^{5} + \frac{7}{17} a^{4} - \frac{4}{17} a^{3} + \frac{7}{17} a^{2} - \frac{1}{17} a$, $\frac{1}{55113638642060963320368147778657} a^{15} + \frac{1572673243136322407624423841799}{55113638642060963320368147778657} a^{14} + \frac{19509977824883698099395099666929}{55113638642060963320368147778657} a^{13} - \frac{3363354316434049120749340018871}{7873376948865851902909735396951} a^{12} - \frac{19575030311709887503331694159905}{55113638642060963320368147778657} a^{11} + \frac{24541563544649031098875909070809}{55113638642060963320368147778657} a^{10} - \frac{21897138615653829147863917533003}{55113638642060963320368147778657} a^{9} - \frac{18698950115062100618507688977314}{55113638642060963320368147778657} a^{8} + \frac{11839769860150413066490623696549}{55113638642060963320368147778657} a^{7} + \frac{12219695019711043095438244806138}{55113638642060963320368147778657} a^{6} + \frac{525243424267742654290696204523}{55113638642060963320368147778657} a^{5} + \frac{21328978151162455630774960410905}{55113638642060963320368147778657} a^{4} - \frac{40973258046750877647289056697}{463139820521520700171160905703} a^{3} + \frac{1426602301424387080866043551482}{55113638642060963320368147778657} a^{2} + \frac{1701003180543480828454113564924}{7873376948865851902909735396951} a + \frac{917464218136822622488624588149}{3241978743650644901198126339921}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 374028203.834 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.242665652224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 113 | Data not computed | ||||||