Normalized defining polynomial
\( x^{16} - 40 x^{14} + 324 x^{12} + 5160 x^{10} - 90786 x^{8} + 394376 x^{6} - 153564 x^{4} - 1126216 x^{2} + 693889 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28379910764965177995302489030656=2^{66}\cdot 17^{2}\cdot 191^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{170} a^{10} - \frac{12}{85} a^{8} - \frac{11}{85} a^{6} + \frac{27}{85} a^{4} + \frac{1}{34} a^{2} - \frac{2}{5}$, $\frac{1}{340} a^{11} - \frac{1}{340} a^{10} + \frac{61}{340} a^{9} - \frac{61}{340} a^{8} - \frac{11}{170} a^{7} + \frac{11}{170} a^{6} + \frac{27}{170} a^{5} - \frac{27}{170} a^{4} + \frac{1}{68} a^{3} - \frac{1}{68} a^{2} + \frac{1}{20} a - \frac{1}{20}$, $\frac{1}{69700} a^{12} - \frac{14}{17425} a^{10} - \frac{2569}{69700} a^{8} - \frac{7101}{34850} a^{6} - \frac{363}{69700} a^{4} - \frac{5469}{34850} a^{2} - \frac{797}{4100}$, $\frac{1}{487900} a^{13} + \frac{149}{487900} a^{11} - \frac{1}{340} a^{10} - \frac{14941}{121975} a^{9} - \frac{61}{340} a^{8} + \frac{30172}{121975} a^{7} + \frac{11}{170} a^{6} + \frac{10707}{487900} a^{5} - \frac{27}{170} a^{4} - \frac{219013}{487900} a^{3} - \frac{1}{68} a^{2} - \frac{148}{7175} a - \frac{1}{20}$, $\frac{1}{14828259239500} a^{14} - \frac{60583493}{14828259239500} a^{12} + \frac{1582552359}{872250543500} a^{10} + \frac{3302578925801}{14828259239500} a^{8} + \frac{2823350462811}{14828259239500} a^{6} + \frac{3634072871593}{14828259239500} a^{4} + \frac{219960156321}{872250543500} a^{2} - \frac{42181117}{1047119500}$, $\frac{1}{103797814676500} a^{15} - \frac{60583493}{103797814676500} a^{13} + \frac{6713437909}{6105753804500} a^{11} + \frac{8623307241151}{103797814676500} a^{9} + \frac{8318528886861}{103797814676500} a^{7} - \frac{43554681531757}{103797814676500} a^{5} + \frac{2426240942821}{6105753804500} a^{3} - \frac{3602387417}{7329836500} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36468100129.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.195584.1, \(\Q(\zeta_{16})^+\), 4.4.391168.1, 8.8.2448198467584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191 | Data not computed | ||||||