Normalized defining polynomial
\( x^{16} - 5 x^{15} - 23 x^{14} + 160 x^{13} - 329 x^{12} - 171 x^{11} + 7911 x^{10} - 22020 x^{9} - 1725 x^{8} + 71146 x^{7} - 378007 x^{6} + 638197 x^{5} + 852831 x^{4} - 1953614 x^{3} + 532701 x^{2} + 114347 x - 32741 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26103603462974877571097265625=5^{8}\cdot 11^{4}\cdot 19\cdot 29^{10}\cdot 571\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 19, 29, 571$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{377} a^{14} - \frac{97}{377} a^{13} - \frac{175}{377} a^{12} + \frac{126}{377} a^{11} + \frac{142}{377} a^{10} - \frac{175}{377} a^{9} + \frac{54}{377} a^{8} + \frac{155}{377} a^{7} - \frac{155}{377} a^{6} + \frac{11}{377} a^{5} + \frac{59}{377} a^{4} - \frac{5}{13} a^{3} + \frac{2}{13} a^{2} - \frac{5}{13} a + \frac{1}{13}$, $\frac{1}{1754343961248584224130885462839325142665745781} a^{15} + \frac{1878933056481383993147964020888982849337941}{1754343961248584224130885462839325142665745781} a^{14} + \frac{504886871940923661670932223838473365754599220}{1754343961248584224130885462839325142665745781} a^{13} - \frac{296883814547599061161652779680998915820207774}{1754343961248584224130885462839325142665745781} a^{12} - \frac{53917998106783418675995238727903743730986304}{134949535480660324933145035603025010974288137} a^{11} + \frac{638641398432923044078370100798128319143985951}{1754343961248584224130885462839325142665745781} a^{10} - \frac{88439375746932079981837206280187373857876020}{1754343961248584224130885462839325142665745781} a^{9} - \frac{77754257783227267397621797224451129862815338}{1754343961248584224130885462839325142665745781} a^{8} + \frac{60411117295688456847043873906904094578965947}{1754343961248584224130885462839325142665745781} a^{7} + \frac{108659726185396881571810626597182631431277442}{1754343961248584224130885462839325142665745781} a^{6} - \frac{160333308984442488372568298447873615198825022}{1754343961248584224130885462839325142665745781} a^{5} - \frac{694608562395102426683607576278195719023634449}{1754343961248584224130885462839325142665745781} a^{4} - \frac{1028363218763487150282841419730264197844171}{4653432257953804308039483986311207274975453} a^{3} + \frac{28160366807770247722983200444116138751651790}{60494619353399456004513291822045694574680889} a^{2} - \frac{2497815401957836206021507380790248503182736}{60494619353399456004513291822045694574680889} a + \frac{8716088570066372792649985285756556756148953}{60494619353399456004513291822045694574680889}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 251138060.989 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8192 |
| The 104 conjugacy class representatives for t16n1722 are not computed |
| Character table for t16n1722 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.1844418125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | $16$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $29$ | 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.8.4.2 | $x^{8} - 24389 x^{2} + 13438339$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 571 | Data not computed | ||||||