Normalized defining polynomial
\( x^{16} - 2 x^{15} - 58 x^{14} + 37 x^{13} + 1350 x^{12} + 786 x^{11} - 14262 x^{10} - 22454 x^{9} + 55928 x^{8} + 149437 x^{7} - 7339 x^{6} - 296732 x^{5} - 267330 x^{4} - 24747 x^{3} + 50232 x^{2} + 13177 x + 673 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24292037884309209334711647701449=61^{2}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{183} a^{14} - \frac{16}{183} a^{13} - \frac{29}{183} a^{12} + \frac{86}{183} a^{11} + \frac{2}{61} a^{10} - \frac{25}{183} a^{9} + \frac{46}{183} a^{8} - \frac{15}{61} a^{7} - \frac{53}{183} a^{6} - \frac{73}{183} a^{5} - \frac{8}{183} a^{4} - \frac{16}{183} a^{3} + \frac{16}{61} a^{2} - \frac{34}{183} a - \frac{71}{183}$, $\frac{1}{140357228701230661618264233} a^{15} + \frac{13032633002773203553735}{140357228701230661618264233} a^{14} - \frac{17424851102060579459271743}{140357228701230661618264233} a^{13} - \frac{7261284268959031793414236}{140357228701230661618264233} a^{12} + \frac{18011132145665111725391756}{140357228701230661618264233} a^{11} - \frac{3805477992677189469551816}{140357228701230661618264233} a^{10} - \frac{15908916342678165828740595}{46785742900410220539421411} a^{9} - \frac{130196192901221154003719}{312599618488264279773417} a^{8} - \frac{25830664026736364751271256}{140357228701230661618264233} a^{7} + \frac{42792329246253971037966430}{140357228701230661618264233} a^{6} - \frac{62601269049703245225756065}{140357228701230661618264233} a^{5} + \frac{66474436897267407604604987}{140357228701230661618264233} a^{4} - \frac{23194789589298692004828076}{140357228701230661618264233} a^{3} - \frac{33362742378173152883798846}{140357228701230661618264233} a^{2} - \frac{18686329650462435168268604}{46785742900410220539421411} a - \frac{13061385338828930609541286}{140357228701230661618264233}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10188441972.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |