Normalized defining polynomial
\( x^{16} - 112 x^{14} - 192 x^{13} - 780 x^{12} + 6448 x^{11} + 281136 x^{10} + 751200 x^{9} - 4977480 x^{8} - 35641232 x^{7} - 58032376 x^{6} + 286004864 x^{5} + 1391830936 x^{4} + 2111300176 x^{3} + 1233840416 x^{2} + 144814432 x - 61147198 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2370318527000656631345659186329419776=2^{66}\cdot 17^{6}\cdot 191^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $187.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{5}{17} a^{11} - \frac{2}{17} a^{10} + \frac{2}{17} a^{9} - \frac{5}{17} a^{8} - \frac{3}{17} a^{7} - \frac{8}{17} a^{6} - \frac{2}{17} a^{5} + \frac{8}{17} a^{4} + \frac{5}{17} a^{3} + \frac{5}{17} a^{2}$, $\frac{1}{17} a^{13} + \frac{7}{17} a^{11} - \frac{5}{17} a^{10} + \frac{2}{17} a^{9} + \frac{5}{17} a^{8} + \frac{7}{17} a^{7} + \frac{4}{17} a^{6} + \frac{1}{17} a^{5} - \frac{1}{17} a^{4} - \frac{3}{17} a^{3} - \frac{8}{17} a^{2}$, $\frac{1}{17} a^{14} - \frac{6}{17} a^{11} - \frac{1}{17} a^{10} + \frac{8}{17} a^{9} + \frac{8}{17} a^{8} + \frac{8}{17} a^{7} + \frac{6}{17} a^{6} - \frac{4}{17} a^{5} - \frac{8}{17} a^{4} + \frac{8}{17} a^{3} - \frac{1}{17} a^{2}$, $\frac{1}{219708376540806369339366734378111002693372210466354050525185435071} a^{15} - \frac{12244213994463894744772169509218153471194307167023385600018678}{1846288878494171170919048188051352963809850508120622273320886009} a^{14} - \frac{58293433844450189199007272793843260375220025142529324543440624}{31386910934400909905623819196873000384767458638050578646455062153} a^{13} + \frac{2436309675996794304395109353933518505137983074771990442839674436}{219708376540806369339366734378111002693372210466354050525185435071} a^{12} - \frac{105227383833235479105207101906293628120937115535709440076742770966}{219708376540806369339366734378111002693372210466354050525185435071} a^{11} - \frac{18064111432072432296395753192029230792253054565556653171572238960}{219708376540806369339366734378111002693372210466354050525185435071} a^{10} + \frac{108262592452796519154263360052060210598759542571625418943285915329}{219708376540806369339366734378111002693372210466354050525185435071} a^{9} - \frac{25656782092269744842468646091603778500968555329698355880753093818}{219708376540806369339366734378111002693372210466354050525185435071} a^{8} - \frac{101518928011312944974993000948296291579812367729652511317612703005}{219708376540806369339366734378111002693372210466354050525185435071} a^{7} - \frac{42692575167047832647100500007549912738470838554800288375383292568}{219708376540806369339366734378111002693372210466354050525185435071} a^{6} - \frac{49001776446388435005283526152272946821478352756573381208242360948}{219708376540806369339366734378111002693372210466354050525185435071} a^{5} - \frac{89466851719199222140358199912897708433783185916944423522077619399}{219708376540806369339366734378111002693372210466354050525185435071} a^{4} + \frac{2783759916143476188707698141743830689395717998816044447127777207}{12924022149459198196433337316359470746668953556844355913246202063} a^{3} + \frac{805965987292813572582935708074768472111286432083005375633167038}{12924022149459198196433337316359470746668953556844355913246202063} a^{2} - \frac{26277226997095233540465205704973098112814905869206699053548660}{760236597027011658613725724491733573333467856284962112543894239} a - \frac{18865655200447683516713547841102962861192506170542819334453301}{108605228146715951230532246355961939047638265183566016077699177}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2288153594680 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.195584.1, 4.4.391168.1, 8.8.2448198467584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191 | Data not computed | ||||||