Normalized defining polynomial
\( x^{16} - 6 x^{15} - 68 x^{14} + 410 x^{13} + 1313 x^{12} - 11454 x^{11} + 5874 x^{10} + 186897 x^{9} - 398494 x^{8} - 1609224 x^{7} + 4265765 x^{6} + 4925652 x^{5} - 20020144 x^{4} + 8333545 x^{3} + 38229184 x^{2} - 43213225 x + 9590257 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2356327674777993305467029827040553=61^{2}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2206} a^{14} + \frac{55}{2206} a^{13} + \frac{271}{2206} a^{12} + \frac{1069}{2206} a^{11} + \frac{329}{2206} a^{10} + \frac{859}{2206} a^{9} - \frac{853}{2206} a^{8} + \frac{501}{2206} a^{7} + \frac{921}{2206} a^{6} + \frac{75}{2206} a^{5} + \frac{245}{2206} a^{4} + \frac{175}{2206} a^{3} - \frac{959}{2206} a^{2} + \frac{877}{2206} a + \frac{35}{2206}$, $\frac{1}{795798719386910948399679044635077360631847288342} a^{15} + \frac{22152848622474811561904776245210581532799882}{397899359693455474199839522317538680315923644171} a^{14} - \frac{78900245459950609489668696816629081578882385527}{795798719386910948399679044635077360631847288342} a^{13} - \frac{76008086832331660664247263281446827872945802151}{795798719386910948399679044635077360631847288342} a^{12} - \frac{95843872007826280473099325651218468906879427531}{397899359693455474199839522317538680315923644171} a^{11} + \frac{13089589412885773968357780425741099627313754431}{795798719386910948399679044635077360631847288342} a^{10} - \frac{102207993387829342135361806576000071708923284995}{795798719386910948399679044635077360631847288342} a^{9} + \frac{98543873780829819509321138738951257293395873934}{397899359693455474199839522317538680315923644171} a^{8} + \frac{60865505687362647932922136108403071970861030767}{795798719386910948399679044635077360631847288342} a^{7} - \frac{153229371359805933438029390388617520561723571039}{795798719386910948399679044635077360631847288342} a^{6} - \frac{198422107123392451668638001429458014826207123984}{397899359693455474199839522317538680315923644171} a^{5} - \frac{90791196298205807739936542601229497018103055653}{795798719386910948399679044635077360631847288342} a^{4} - \frac{15105037990923605165364234071056514071824860615}{795798719386910948399679044635077360631847288342} a^{3} + \frac{12741213281121932384885868497322449433286651165}{397899359693455474199839522317538680315923644171} a^{2} + \frac{234370510767227953122613631994490248677359930973}{795798719386910948399679044635077360631847288342} a - \frac{173039456397479787813125413679561179322329795396}{397899359693455474199839522317538680315923644171}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58806365822.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||