Properties

Label 16.12.2282954830...9072.1
Degree $16$
Signature $[12, 2]$
Discriminant $2^{32}\cdot 3^{8}\cdot 17^{4}\cdot 97$
Root discriminant $18.72$
Ramified primes $2, 3, 17, 97$
Class number $1$
Class group Trivial
Galois group 16T1590

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -10, -20, 48, 36, -128, -36, 200, 20, -168, -4, 71, 0, -14, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 14*x^14 + 71*x^12 - 4*x^11 - 168*x^10 + 20*x^9 + 200*x^8 - 36*x^7 - 128*x^6 + 36*x^5 + 48*x^4 - 20*x^3 - 10*x^2 + 4*x + 1)
 
gp: K = bnfinit(x^16 - 14*x^14 + 71*x^12 - 4*x^11 - 168*x^10 + 20*x^9 + 200*x^8 - 36*x^7 - 128*x^6 + 36*x^5 + 48*x^4 - 20*x^3 - 10*x^2 + 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 14 x^{14} + 71 x^{12} - 4 x^{11} - 168 x^{10} + 20 x^{9} + 200 x^{8} - 36 x^{7} - 128 x^{6} + 36 x^{5} + 48 x^{4} - 20 x^{3} - 10 x^{2} + 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(228295483029373059072=2^{32}\cdot 3^{8}\cdot 17^{4}\cdot 97\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.72$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 17, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{6}{13} a^{13} - \frac{6}{13} a^{12} + \frac{4}{13} a^{11} + \frac{3}{13} a^{10} + \frac{6}{13} a^{9} + \frac{5}{13} a^{8} - \frac{1}{13} a^{7} + \frac{2}{13} a^{6} + \frac{4}{13} a^{5} - \frac{4}{13} a^{4} + \frac{4}{13} a^{3} + \frac{2}{13} a^{2} - \frac{3}{13} a - \frac{6}{13}$, $\frac{1}{7787} a^{15} + \frac{236}{7787} a^{14} - \frac{3020}{7787} a^{13} + \frac{1887}{7787} a^{12} + \frac{257}{599} a^{11} + \frac{787}{7787} a^{10} + \frac{1671}{7787} a^{9} + \frac{3229}{7787} a^{8} + \frac{1514}{7787} a^{7} + \frac{3259}{7787} a^{6} - \frac{2516}{7787} a^{5} - \frac{3126}{7787} a^{4} + \frac{3275}{7787} a^{3} + \frac{769}{7787} a^{2} + \frac{1774}{7787} a + \frac{2962}{7787}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 28228.0146836 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1590:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 106 conjugacy class representatives for t16n1590 are not computed
Character table for t16n1590 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.4.4352.1, 4.4.9792.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$17$17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97Data not computed