Normalized defining polynomial
\( x^{16} - 119 x^{14} + 2516 x^{12} + 65892 x^{10} - 1622378 x^{8} - 3153551 x^{6} + 214259364 x^{4} - 1226039694 x^{2} + 1913364977 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21113617530364765644381463052288=2^{16}\cdot 17^{15}\cdot 103^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{206} a^{10} - \frac{8}{103} a^{8} - \frac{59}{206} a^{6} - \frac{14}{103} a^{4} - \frac{25}{206} a^{2} - \frac{1}{2}$, $\frac{1}{206} a^{11} - \frac{8}{103} a^{9} - \frac{59}{206} a^{7} - \frac{14}{103} a^{5} - \frac{25}{206} a^{3} - \frac{1}{2} a$, $\frac{1}{42436} a^{12} + \frac{87}{42436} a^{10} + \frac{9829}{42436} a^{8} - \frac{20525}{42436} a^{6} - \frac{4969}{42436} a^{4} - \frac{19}{103} a^{2} + \frac{1}{4}$, $\frac{1}{42436} a^{13} + \frac{87}{42436} a^{11} + \frac{9829}{42436} a^{9} - \frac{20525}{42436} a^{7} - \frac{4969}{42436} a^{5} - \frac{19}{103} a^{3} + \frac{1}{4} a$, $\frac{1}{6068720158151111687062311544} a^{14} + \frac{772701190816212175930}{758590019768888960882788943} a^{12} + \frac{2876327137750500732881471}{1517180039537777921765577886} a^{10} - \frac{348887192727304798917807176}{758590019768888960882788943} a^{8} + \frac{809470115521948772821945687}{3034360079075555843531155772} a^{6} - \frac{3747145847280134208064179}{58919613185933123175362248} a^{4} + \frac{116449012404799232302617}{572035079475078865780216} a^{2} - \frac{1833833502350671345153}{5553738635680377337672}$, $\frac{1}{6068720158151111687062311544} a^{15} + \frac{772701190816212175930}{758590019768888960882788943} a^{13} + \frac{2876327137750500732881471}{1517180039537777921765577886} a^{11} - \frac{348887192727304798917807176}{758590019768888960882788943} a^{9} + \frac{809470115521948772821945687}{3034360079075555843531155772} a^{7} - \frac{3747145847280134208064179}{58919613185933123175362248} a^{5} + \frac{116449012404799232302617}{572035079475078865780216} a^{3} - \frac{1833833502350671345153}{5553738635680377337672} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5678560818.23 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| 17 | Data not computed | ||||||
| 103 | Data not computed | ||||||