Properties

Label 16.12.2043437210...5392.1
Degree $16$
Signature $[12, 2]$
Discriminant $2^{31}\cdot 7^{2}\cdot 17^{8}\cdot 2297^{4}$
Root discriminant $139.44$
Ramified primes $2, 7, 17, 2297$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1581

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9558, -15876, -117522, 80328, 189433, -16032, -68646, -19536, -3491, 5228, 3026, -184, -45, -8, -26, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 26*x^14 - 8*x^13 - 45*x^12 - 184*x^11 + 3026*x^10 + 5228*x^9 - 3491*x^8 - 19536*x^7 - 68646*x^6 - 16032*x^5 + 189433*x^4 + 80328*x^3 - 117522*x^2 - 15876*x + 9558)
 
gp: K = bnfinit(x^16 - 26*x^14 - 8*x^13 - 45*x^12 - 184*x^11 + 3026*x^10 + 5228*x^9 - 3491*x^8 - 19536*x^7 - 68646*x^6 - 16032*x^5 + 189433*x^4 + 80328*x^3 - 117522*x^2 - 15876*x + 9558, 1)
 

Normalized defining polynomial

\( x^{16} - 26 x^{14} - 8 x^{13} - 45 x^{12} - 184 x^{11} + 3026 x^{10} + 5228 x^{9} - 3491 x^{8} - 19536 x^{7} - 68646 x^{6} - 16032 x^{5} + 189433 x^{4} + 80328 x^{3} - 117522 x^{2} - 15876 x + 9558 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(20434372100444980042526777925435392=2^{31}\cdot 7^{2}\cdot 17^{8}\cdot 2297^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $139.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 17, 2297$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{80} a^{12} - \frac{1}{40} a^{10} - \frac{3}{20} a^{5} - \frac{11}{80} a^{4} - \frac{3}{10} a^{3} - \frac{3}{40} a^{2} - \frac{3}{20} a + \frac{17}{40}$, $\frac{1}{6240} a^{13} - \frac{1}{416} a^{12} - \frac{151}{3120} a^{11} + \frac{19}{624} a^{10} - \frac{1}{26} a^{9} - \frac{29}{312} a^{8} - \frac{71}{312} a^{7} + \frac{347}{1560} a^{6} - \frac{227}{480} a^{5} + \frac{467}{2080} a^{4} - \frac{401}{1040} a^{3} - \frac{287}{1040} a^{2} + \frac{1067}{3120} a + \frac{27}{208}$, $\frac{1}{3407040} a^{14} + \frac{3}{94640} a^{13} + \frac{1441}{3407040} a^{12} - \frac{11737}{425880} a^{11} + \frac{11503}{189280} a^{10} + \frac{7379}{85176} a^{9} - \frac{6641}{170352} a^{8} - \frac{84463}{851760} a^{7} - \frac{92921}{486720} a^{6} - \frac{9331}{20280} a^{5} + \frac{27623}{1135680} a^{4} - \frac{4123}{40560} a^{3} + \frac{4405}{21294} a^{2} + \frac{2623}{283920} a + \frac{85719}{189280}$, $\frac{1}{52891301206811546256960} a^{15} - \frac{181787992612703}{5876811245201282917440} a^{14} - \frac{1612815295340330657}{52891301206811546256960} a^{13} + \frac{774732793033702385}{1511180034480329893056} a^{12} + \frac{22649537418771768185}{587681124520128291744} a^{11} - \frac{2360622827288087561}{290611545092371133280} a^{10} - \frac{60235304079716101043}{2644565060340577312848} a^{9} + \frac{49136959438192882429}{1652853162712860820530} a^{8} + \frac{4372473313030209928813}{52891301206811546256960} a^{7} + \frac{260178654393176669713}{2518633390800549821760} a^{6} + \frac{1411842844577021382865}{3526086747120769750464} a^{5} - \frac{1619450444055003801127}{17630433735603848752320} a^{4} - \frac{3241794093242201137027}{6611412650851443282120} a^{3} + \frac{1002362621659028891}{3245661586083182760} a^{2} + \frac{787470779134244840711}{2938405622600641458720} a + \frac{112201890787087071731}{979468540866880486240}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2116146488420 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1581:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 94 conjugacy class representatives for t16n1581 are not computed
Character table for t16n1581 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.9248.1, 4.4.663833.1, 4.4.21242656.2, 8.8.451250433934336.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.9.3$x^{4} + 6 x^{2} + 10$$4$$1$$9$$D_{4}$$[2, 3, 7/2]$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.8.6$x^{4} + 6 x^{2} + 4 x + 2$$4$$1$$8$$D_{4}$$[2, 3]^{2}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
2297Data not computed