Normalized defining polynomial
\( x^{16} - 2 x^{15} - 4 x^{14} + 23 x^{13} - 182 x^{12} - 46 x^{11} + 1179 x^{10} - 1502 x^{9} + 776 x^{8} + 12647 x^{7} - 11064 x^{6} - 26215 x^{5} + 10486 x^{4} + 15687 x^{3} - 1182 x^{2} - 2572 x - 239 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17521464151279710991512529=17^{14}\cdot 101^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{239} a^{14} - \frac{34}{239} a^{13} + \frac{111}{239} a^{12} - \frac{83}{239} a^{11} + \frac{109}{239} a^{10} + \frac{28}{239} a^{9} + \frac{103}{239} a^{8} - \frac{16}{239} a^{7} + \frac{15}{239} a^{6} + \frac{11}{239} a^{5} + \frac{40}{239} a^{4} + \frac{42}{239} a^{3} + \frac{97}{239} a^{2} - \frac{81}{239} a$, $\frac{1}{1956502386941757401809357720757} a^{15} + \frac{1155020458287307086852401662}{1956502386941757401809357720757} a^{14} - \frac{3400523611728348750470993640}{19371310761799578235736215057} a^{13} + \frac{791907489645686933395395538938}{1956502386941757401809357720757} a^{12} + \frac{381889154147929386521919884606}{1956502386941757401809357720757} a^{11} - \frac{767301973977301140761726126456}{1956502386941757401809357720757} a^{10} - \frac{418165506450071012988363528678}{1956502386941757401809357720757} a^{9} - \frac{842029109041645576985575802394}{1956502386941757401809357720757} a^{8} - \frac{435363037999789149547613837132}{1956502386941757401809357720757} a^{7} + \frac{134594000631029352860881516172}{1956502386941757401809357720757} a^{6} + \frac{505610506317948027269102836415}{1956502386941757401809357720757} a^{5} + \frac{951932116280779057725954725053}{1956502386941757401809357720757} a^{4} + \frac{21201934161547241779565439141}{1956502386941757401809357720757} a^{3} + \frac{752955901748882742290311074152}{1956502386941757401809357720757} a^{2} - \frac{354600802414593585232939072377}{1956502386941757401809357720757} a - \frac{1219531733307688964671303837}{8186202455823252727235806363}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7947040.59106 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 101 | Data not computed | ||||||