Normalized defining polynomial
\( x^{16} - 5 x^{15} + 2 x^{14} + 50 x^{13} - 136 x^{12} - 18 x^{11} + 590 x^{10} - 665 x^{9} - 935 x^{8} + 1779 x^{7} + 414 x^{6} - 1693 x^{5} + 306 x^{4} + 522 x^{3} - 242 x^{2} + 30 x - 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(173479843081977336549629=17^{14}\cdot 101^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1291} a^{14} + \frac{373}{1291} a^{13} - \frac{131}{1291} a^{12} - \frac{256}{1291} a^{11} + \frac{438}{1291} a^{10} + \frac{175}{1291} a^{9} + \frac{353}{1291} a^{8} - \frac{599}{1291} a^{7} + \frac{427}{1291} a^{6} - \frac{379}{1291} a^{5} + \frac{522}{1291} a^{4} + \frac{394}{1291} a^{3} - \frac{479}{1291} a^{2} - \frac{468}{1291} a + \frac{212}{1291}$, $\frac{1}{52822567619} a^{15} - \frac{9785224}{52822567619} a^{14} - \frac{26043223232}{52822567619} a^{13} - \frac{9571924259}{52822567619} a^{12} - \frac{15298950249}{52822567619} a^{11} - \frac{14375784330}{52822567619} a^{10} + \frac{2039284359}{52822567619} a^{9} + \frac{2247045627}{52822567619} a^{8} - \frac{20852763347}{52822567619} a^{7} - \frac{4295217375}{52822567619} a^{6} - \frac{10901099841}{52822567619} a^{5} + \frac{1363049805}{52822567619} a^{4} + \frac{21671183632}{52822567619} a^{3} + \frac{14463213382}{52822567619} a^{2} + \frac{10892413355}{52822567619} a + \frac{2611059185}{52822567619}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 859130.927919 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 56 conjugacy class representatives for t16n1351 are not computed |
| Character table for t16n1351 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 101 | Data not computed | ||||||