Normalized defining polynomial
\( x^{16} - 4 x^{15} - 1200 x^{14} + 7176 x^{13} + 382131 x^{12} - 2827226 x^{11} - 21896116 x^{10} + 489716073 x^{9} - 5522964746 x^{8} - 29475464342 x^{7} + 764166087629 x^{6} - 664207203366 x^{5} - 29332809376400 x^{4} + 96649385827419 x^{3} + 203116946704020 x^{2} - 1620760775169645 x + 2927618217243747 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17328553034618181867273005889005225191371184588849=61^{12}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1195.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{12} + \frac{1}{9} a^{10} - \frac{7}{18} a^{9} + \frac{4}{9} a^{7} + \frac{7}{18} a^{6} - \frac{2}{9} a^{5} - \frac{2}{9} a^{4} - \frac{5}{18} a^{3} + \frac{2}{9} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{13} + \frac{1}{9} a^{11} - \frac{1}{18} a^{10} - \frac{1}{3} a^{9} + \frac{4}{9} a^{8} + \frac{1}{18} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} - \frac{5}{18} a^{4} - \frac{1}{9} a^{3} - \frac{1}{6} a$, $\frac{1}{112698} a^{14} - \frac{2597}{112698} a^{13} + \frac{2273}{112698} a^{12} + \frac{9901}{112698} a^{11} + \frac{2039}{112698} a^{10} + \frac{35573}{112698} a^{9} - \frac{8405}{37566} a^{8} - \frac{1805}{37566} a^{7} + \frac{31717}{112698} a^{6} + \frac{11335}{37566} a^{5} + \frac{15569}{112698} a^{4} + \frac{33319}{112698} a^{3} + \frac{3481}{37566} a^{2} + \frac{665}{4174} a - \frac{105}{4174}$, $\frac{1}{597789376114090996835891304267069761836063093205192746982516783478034870688268663309540403692621855138} a^{15} + \frac{178129132973222439917093600711332776476235285820519072204450127358592652541449718881693875468582}{298894688057045498417945652133534880918031546602596373491258391739017435344134331654770201846310927569} a^{14} - \frac{2314763836743976286282335495429255030170811584595859305148115965124616746829853359291072985383033753}{99631562685681832805981884044511626972677182200865457830419463913005811781378110551590067282103642523} a^{13} + \frac{1134271216186677377410408612078894875128166544996791145904323751066604061564262147627321317752448345}{199263125371363665611963768089023253945354364401730915660838927826011623562756221103180134564207285046} a^{12} + \frac{11717735163544494007289019736900212362021064364343706974929311926355114690424960210735980079444423105}{99631562685681832805981884044511626972677182200865457830419463913005811781378110551590067282103642523} a^{11} - \frac{37221579214919868129521343329241476431903915898231490694521382438727925500935630273951603076735980549}{298894688057045498417945652133534880918031546602596373491258391739017435344134331654770201846310927569} a^{10} - \frac{179900450686269476024179658152922244212730674060824495688396193587774077340417265487687373650565751403}{597789376114090996835891304267069761836063093205192746982516783478034870688268663309540403692621855138} a^{9} + \frac{819010788430764371819043931616606330375779580647183733584338908749619832323943081025060775457808865}{11070173631742425867331320449390180774741909133429495314491051545889534642375345616843340809122626947} a^{8} + \frac{850785075317804458192186195510346878334518634087845610081200769792517520653518190039613339629040685}{298894688057045498417945652133534880918031546602596373491258391739017435344134331654770201846310927569} a^{7} + \frac{57246752458640764958122750080612095447429072099737778128744097150563213155059055578077836491405573665}{597789376114090996835891304267069761836063093205192746982516783478034870688268663309540403692621855138} a^{6} + \frac{96308121534186418350349547907645059902668300512300282615782866098604045124041341841745512826275335326}{298894688057045498417945652133534880918031546602596373491258391739017435344134331654770201846310927569} a^{5} + \frac{27804392296348981571904107460298115701054533915322542131698330205179752738417662427559791350685502510}{99631562685681832805981884044511626972677182200865457830419463913005811781378110551590067282103642523} a^{4} - \frac{82087631741564575802244283197015566509672030354877145254110933824123930526628412700595795252991233735}{597789376114090996835891304267069761836063093205192746982516783478034870688268663309540403692621855138} a^{3} + \frac{20791407169203532397595422398026142067191494474984025920820941029945404591102794030460155649526762140}{99631562685681832805981884044511626972677182200865457830419463913005811781378110551590067282103642523} a^{2} - \frac{9324829065493705724354992035005333313173390753638340730147209738633274533580629512910701545085868798}{33210520895227277601993961348170542324225727400288485943473154637668603927126036850530022427367880841} a + \frac{4556975907850020879852498697291943186232662423066137312162662946582325080866438036778437812889511599}{11070173631742425867331320449390180774741909133429495314491051545889534642375345616843340809122626947}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3765433852790000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.1118720199956720578033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||