Properties

Label 16.12.1665710335...0000.1
Degree $16$
Signature $[12, 2]$
Discriminant $2^{24}\cdot 5^{8}\cdot 17^{12}\cdot 257^{4}$
Root discriminant $212.01$
Ramified primes $2, 5, 17, 257$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group 16T1392

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1893376, 0, -18249536, 0, 3790960, 0, 771016, 0, -196420, 0, 6978, 0, 788, 0, -59, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 59*x^14 + 788*x^12 + 6978*x^10 - 196420*x^8 + 771016*x^6 + 3790960*x^4 - 18249536*x^2 + 1893376)
 
gp: K = bnfinit(x^16 - 59*x^14 + 788*x^12 + 6978*x^10 - 196420*x^8 + 771016*x^6 + 3790960*x^4 - 18249536*x^2 + 1893376, 1)
 

Normalized defining polynomial

\( x^{16} - 59 x^{14} + 788 x^{12} + 6978 x^{10} - 196420 x^{8} + 771016 x^{6} + 3790960 x^{4} - 18249536 x^{2} + 1893376 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(16657103355112538759522949529600000000=2^{24}\cdot 5^{8}\cdot 17^{12}\cdot 257^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $212.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 17, 257$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} + \frac{1}{16} a^{8} - \frac{1}{16} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{1376} a^{13} + \frac{13}{1376} a^{11} + \frac{1}{344} a^{9} + \frac{21}{688} a^{7} - \frac{17}{344} a^{5} - \frac{1}{2} a^{4} + \frac{47}{172} a^{3} - \frac{23}{86} a$, $\frac{1}{53202451476299837056} a^{14} - \frac{1}{2752} a^{13} + \frac{510444854836470977}{53202451476299837056} a^{12} - \frac{13}{2752} a^{11} + \frac{21049002944497032}{415644152158592477} a^{10} - \frac{1}{688} a^{9} + \frac{2141887533780011161}{26601225738149918528} a^{8} + \frac{323}{1376} a^{7} - \frac{658545030928987299}{13300612869074959264} a^{6} + \frac{17}{688} a^{5} - \frac{3219256189505700421}{6650306434537479632} a^{4} + \frac{125}{344} a^{3} + \frac{670844363146977477}{3325153217268739816} a^{2} - \frac{63}{172} a + \frac{2210267904174953}{9666143073455639}$, $\frac{1}{212809805905199348224} a^{15} - \frac{69523729570867363}{212809805905199348224} a^{13} - \frac{1211329805099944581}{53202451476299837056} a^{11} - \frac{1}{16} a^{10} - \frac{5668356069572145151}{106404902952599674112} a^{9} + \frac{1}{16} a^{8} + \frac{3227244484600179579}{53202451476299837056} a^{7} - \frac{1}{8} a^{6} - \frac{1614676439312064347}{26601225738149918528} a^{5} + \frac{1}{8} a^{4} + \frac{2004772107283855659}{13300612869074959264} a^{3} - \frac{1}{2} a^{2} - \frac{1462827425801868311}{3325153217268739816} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 388028558503000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1392:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 80 conjugacy class representatives for t16n1392 are not computed
Character table for t16n1392 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.14854600.1, 4.4.122825.1, 4.4.10101128.2, 8.8.63770491795240000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.3.2$x^{2} + 6$$2$$1$$3$$C_2$$[3]$
2.4.11.15$x^{4} + 30$$4$$1$$11$$D_{4}$$[2, 3, 4]$
2.4.10.3$x^{4} + 6 x^{2} - 9$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$17$17.8.6.1$x^{8} - 119 x^{4} + 23409$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
17.8.6.1$x^{8} - 119 x^{4} + 23409$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
257Data not computed