Normalized defining polynomial
\( x^{16} - 2 x^{15} - 19 x^{14} + 76 x^{13} - 1315 x^{12} - 704 x^{11} + 24668 x^{10} - 16820 x^{9} + 90295 x^{8} + 739670 x^{7} - 3191927 x^{6} - 8753276 x^{5} + 11928784 x^{4} + 32144966 x^{3} - 1452855 x^{2} - 22910800 x - 6748849 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1591115136537072994381860110336=2^{16}\cdot 43^{5}\cdot 2777^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{1866} a^{14} + \frac{40}{933} a^{13} - \frac{101}{933} a^{12} + \frac{70}{933} a^{11} - \frac{32}{311} a^{10} + \frac{87}{311} a^{9} + \frac{881}{1866} a^{8} + \frac{123}{311} a^{7} + \frac{71}{311} a^{6} + \frac{250}{933} a^{5} + \frac{1}{622} a^{4} + \frac{123}{311} a^{3} + \frac{547}{1866} a^{2} - \frac{43}{311} a - \frac{143}{1866}$, $\frac{1}{1071592839401515138122942050629970198351959186383205434} a^{15} + \frac{43717955438945288868870443795589700360757442110719}{357197613133838379374314016876656732783986395461068478} a^{14} + \frac{49880026589326133536109532561912545608903326319353863}{535796419700757569061471025314985099175979593191602717} a^{13} + \frac{129636116235809344698243450380603170294271931616965463}{1071592839401515138122942050629970198351959186383205434} a^{12} - \frac{54326578267047065363231753214384831466447365409547006}{535796419700757569061471025314985099175979593191602717} a^{11} + \frac{52943038420014207907763405766089922624368457688434415}{357197613133838379374314016876656732783986395461068478} a^{10} - \frac{882319787838802805148700680769065564743936801762155}{1071592839401515138122942050629970198351959186383205434} a^{9} - \frac{107633149678272940755408044235641764543166727748596721}{1071592839401515138122942050629970198351959186383205434} a^{8} + \frac{22543737522958293684401281482313033595996128506846290}{178598806566919189687157008438328366391993197730534239} a^{7} - \frac{77426588922447329755371270537830290089432382621027487}{535796419700757569061471025314985099175979593191602717} a^{6} - \frac{187487762018540473940773839018186524196988770688125823}{1071592839401515138122942050629970198351959186383205434} a^{5} + \frac{128961959081708123272522107003203529978973966098523755}{357197613133838379374314016876656732783986395461068478} a^{4} + \frac{197591931467632365180245657766142828117491319113467809}{1071592839401515138122942050629970198351959186383205434} a^{3} + \frac{50518164236684501168511379788215868178128214851533243}{535796419700757569061471025314985099175979593191602717} a^{2} - \frac{63573842354913077439807120668170085543406538586669585}{1071592839401515138122942050629970198351959186383205434} a + \frac{410418147558498823320611921169041491335422339113488697}{1071592839401515138122942050629970198351959186383205434}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3137814015.83 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12288 |
| The 64 conjugacy class representatives for t16n1760 are not computed |
| Character table for t16n1760 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.12.12.8 | $x^{12} + 8 x^{10} - 31 x^{8} + 64 x^{6} - 53 x^{4} - 8 x^{2} - 45$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| $43$ | 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.6.3.1 | $x^{6} - 86 x^{4} + 1849 x^{2} - 7950700$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 2777 | Data not computed | ||||||