Normalized defining polynomial
\( x^{16} - 58 x^{14} - 281 x^{12} + 45464 x^{10} - 336639 x^{8} - 7059712 x^{6} + 84575163 x^{4} - 153963334 x^{2} + 10220809 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1571275555715210001755383712793895489=23^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{92} a^{10} - \frac{1}{92} a^{8} + \frac{7}{92} a^{6} + \frac{1}{92} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{92} a^{11} - \frac{1}{92} a^{9} + \frac{7}{92} a^{7} + \frac{1}{92} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{184} a^{12} - \frac{1}{184} a^{11} - \frac{11}{92} a^{9} - \frac{17}{184} a^{8} - \frac{15}{92} a^{7} + \frac{31}{184} a^{6} + \frac{11}{92} a^{5} - \frac{45}{184} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{184} a^{13} - \frac{1}{184} a^{11} + \frac{7}{184} a^{9} - \frac{1}{8} a^{8} - \frac{45}{184} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8}$, $\frac{1}{42210202743931045553032} a^{14} + \frac{19473117315309528361}{10552550685982761388258} a^{12} - \frac{1}{184} a^{11} - \frac{1824284503033228517}{373541617202929606664} a^{10} + \frac{1}{184} a^{9} - \frac{734599022817663165817}{21105101371965522776516} a^{8} - \frac{7}{184} a^{7} - \frac{2947579722041987864227}{21105101371965522776516} a^{6} + \frac{45}{184} a^{5} + \frac{1788186902039746260221}{42210202743931045553032} a^{4} - \frac{1}{8} a^{3} + \frac{114831079035629966083}{917613103128935772892} a^{2} + \frac{1}{4} a - \frac{467385970511046507279}{1835226206257871545784}$, $\frac{1}{5867218181406415331871448} a^{15} + \frac{5354167812252618807573}{5867218181406415331871448} a^{13} - \frac{269799792496439250689}{51922284791207215326296} a^{11} - \frac{1}{184} a^{10} + \frac{498400539883852435951283}{5867218181406415331871448} a^{9} + \frac{1}{184} a^{8} - \frac{1099001768546428715186049}{5867218181406415331871448} a^{7} - \frac{7}{184} a^{6} + \frac{484361497162077908472583}{2933609090703207665935724} a^{5} + \frac{45}{184} a^{4} - \frac{56777181314958387953221}{127548221334922072431988} a^{3} - \frac{1}{8} a^{2} - \frac{5306023179832482264636}{31887055333730518107997} a - \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3092262952880 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.54500230757132921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||