Properties

Label 16.12.1571275555...5489.3
Degree $16$
Signature $[12, 2]$
Discriminant $23^{10}\cdot 41^{14}$
Root discriminant $182.92$
Ramified primes $23, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1194

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10220809, 0, -153963334, 0, 84575163, 0, -7059712, 0, -336639, 0, 45464, 0, -281, 0, -58, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 58*x^14 - 281*x^12 + 45464*x^10 - 336639*x^8 - 7059712*x^6 + 84575163*x^4 - 153963334*x^2 + 10220809)
 
gp: K = bnfinit(x^16 - 58*x^14 - 281*x^12 + 45464*x^10 - 336639*x^8 - 7059712*x^6 + 84575163*x^4 - 153963334*x^2 + 10220809, 1)
 

Normalized defining polynomial

\( x^{16} - 58 x^{14} - 281 x^{12} + 45464 x^{10} - 336639 x^{8} - 7059712 x^{6} + 84575163 x^{4} - 153963334 x^{2} + 10220809 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1571275555715210001755383712793895489=23^{10}\cdot 41^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $182.92$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{92} a^{10} - \frac{1}{92} a^{8} + \frac{7}{92} a^{6} + \frac{1}{92} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{92} a^{11} - \frac{1}{92} a^{9} + \frac{7}{92} a^{7} + \frac{1}{92} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{184} a^{12} - \frac{1}{184} a^{11} - \frac{11}{92} a^{9} - \frac{17}{184} a^{8} - \frac{15}{92} a^{7} + \frac{31}{184} a^{6} + \frac{11}{92} a^{5} - \frac{45}{184} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{184} a^{13} - \frac{1}{184} a^{11} + \frac{7}{184} a^{9} - \frac{1}{8} a^{8} - \frac{45}{184} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8}$, $\frac{1}{42210202743931045553032} a^{14} + \frac{19473117315309528361}{10552550685982761388258} a^{12} - \frac{1}{184} a^{11} - \frac{1824284503033228517}{373541617202929606664} a^{10} + \frac{1}{184} a^{9} - \frac{734599022817663165817}{21105101371965522776516} a^{8} - \frac{7}{184} a^{7} - \frac{2947579722041987864227}{21105101371965522776516} a^{6} + \frac{45}{184} a^{5} + \frac{1788186902039746260221}{42210202743931045553032} a^{4} - \frac{1}{8} a^{3} + \frac{114831079035629966083}{917613103128935772892} a^{2} + \frac{1}{4} a - \frac{467385970511046507279}{1835226206257871545784}$, $\frac{1}{5867218181406415331871448} a^{15} + \frac{5354167812252618807573}{5867218181406415331871448} a^{13} - \frac{269799792496439250689}{51922284791207215326296} a^{11} - \frac{1}{184} a^{10} + \frac{498400539883852435951283}{5867218181406415331871448} a^{9} + \frac{1}{184} a^{8} - \frac{1099001768546428715186049}{5867218181406415331871448} a^{7} - \frac{7}{184} a^{6} + \frac{484361497162077908472583}{2933609090703207665935724} a^{5} + \frac{45}{184} a^{4} - \frac{56777181314958387953221}{127548221334922072431988} a^{3} - \frac{1}{8} a^{2} - \frac{5306023179832482264636}{31887055333730518107997} a - \frac{1}{4}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3092262952880 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1194:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 40 conjugacy class representatives for t16n1194
Character table for t16n1194 is not computed

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.54500230757132921.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$23$23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.3.2$x^{4} - 23$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.3.2$x^{4} - 23$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41Data not computed