Normalized defining polynomial
\( x^{16} - 2 x^{15} - 72 x^{14} - 64 x^{13} + 739 x^{12} + 6298 x^{11} + 33232 x^{10} - 43795 x^{9} - 559066 x^{8} - 617694 x^{7} + 801331 x^{6} + 820974 x^{5} - 235098 x^{4} - 223555 x^{3} - 48690 x^{2} - 3767 x + 139 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1571275555715210001755383712793895489=23^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{46} a^{14} - \frac{11}{46} a^{13} + \frac{1}{46} a^{12} - \frac{17}{46} a^{11} + \frac{15}{46} a^{10} - \frac{19}{46} a^{9} - \frac{15}{46} a^{8} + \frac{5}{46} a^{7} - \frac{5}{46} a^{6} + \frac{1}{46} a^{5} + \frac{17}{46} a^{4} + \frac{17}{46} a^{3} + \frac{11}{46} a^{2} - \frac{7}{46} a - \frac{15}{46}$, $\frac{1}{3566515559942137617866696439446775913433726} a^{15} + \frac{34705349030537853541655213088213840297049}{3566515559942137617866696439446775913433726} a^{14} + \frac{133678757290481118581041860760572633878969}{1783257779971068808933348219723387956716863} a^{13} + \frac{652666341249637411646972349247763989320543}{3566515559942137617866696439446775913433726} a^{12} + \frac{82505387776526903027855779739378389974797}{3566515559942137617866696439446775913433726} a^{11} - \frac{772442073320979919185194583819755766733521}{1783257779971068808933348219723387956716863} a^{10} + \frac{300077024186879425206779516305102041668809}{3566515559942137617866696439446775913433726} a^{9} + \frac{832041705360142294377966687934787519263085}{3566515559942137617866696439446775913433726} a^{8} - \frac{322958094989626456501025337122803447101799}{1783257779971068808933348219723387956716863} a^{7} - \frac{431164855957898327802565211578059398978577}{3566515559942137617866696439446775913433726} a^{6} + \frac{555518259066844202900335768932603790572305}{3566515559942137617866696439446775913433726} a^{5} + \frac{232897212807255202309681983684001460603905}{1783257779971068808933348219723387956716863} a^{4} + \frac{1004723128878748753249929308242917579932717}{3566515559942137617866696439446775913433726} a^{3} + \frac{1106311338848836935876076384017486428369749}{3566515559942137617866696439446775913433726} a^{2} + \frac{95286222178784054850326523363188913373894}{1783257779971068808933348219723387956716863} a - \frac{470639728048857341355379546551862527140043}{1783257779971068808933348219723387956716863}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3413144825360 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.54500230757132921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||