Normalized defining polynomial
\( x^{16} - 8 x^{15} - 12 x^{14} + 224 x^{13} - 361 x^{12} - 1110 x^{11} + 964 x^{10} + 11647 x^{9} + 75830 x^{8} - 396280 x^{7} - 423555 x^{6} + 2730202 x^{5} - 776294 x^{4} - 3495249 x^{3} + 1402136 x^{2} + 871865 x + 89731 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14421153369104822203810274058721=47^{2}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{5}{12} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{12} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{5}{12}$, $\frac{1}{34404} a^{13} + \frac{1427}{34404} a^{12} + \frac{26}{183} a^{11} + \frac{1097}{11468} a^{10} + \frac{5579}{34404} a^{9} + \frac{497}{17202} a^{8} + \frac{8831}{34404} a^{7} + \frac{4357}{34404} a^{6} - \frac{919}{2867} a^{5} - \frac{1627}{34404} a^{4} - \frac{13703}{34404} a^{3} - \frac{797}{5734} a^{2} + \frac{11959}{34404} a - \frac{67}{188}$, $\frac{1}{56105324376580542612} a^{14} - \frac{7}{56105324376580542612} a^{13} - \frac{194411194121833227}{4675443698048378551} a^{12} - \frac{1568056271807173923}{18701774792193514204} a^{11} - \frac{259509892196878521}{18701774792193514204} a^{10} + \frac{3246841903948923211}{28052662188290271306} a^{9} - \frac{3614691208062751889}{56105324376580542612} a^{8} + \frac{17259678976194760871}{56105324376580542612} a^{7} - \frac{88127725649251750}{229939854002379273} a^{6} + \frac{277379545242283195}{18701774792193514204} a^{5} - \frac{20853411911519946913}{56105324376580542612} a^{4} - \frac{12579257422687741199}{28052662188290271306} a^{3} + \frac{13068786977354817895}{56105324376580542612} a^{2} + \frac{3887577863288461081}{56105324376580542612} a + \frac{22007610651551920}{76646618000793091}$, $\frac{1}{3422424786971413099332} a^{15} + \frac{23}{3422424786971413099332} a^{14} - \frac{44951243183005175}{3422424786971413099332} a^{13} + \frac{71738718822574117087}{3422424786971413099332} a^{12} - \frac{19248535858121824905}{1140808262323804366444} a^{11} - \frac{23559849260040923107}{1140808262323804366444} a^{10} - \frac{504748945301903026097}{3422424786971413099332} a^{9} - \frac{123239376212927562733}{1140808262323804366444} a^{8} + \frac{223022441705321231479}{3422424786971413099332} a^{7} + \frac{473864573395199250505}{3422424786971413099332} a^{6} - \frac{513371340440728613029}{3422424786971413099332} a^{5} + \frac{2704564197379578301}{26530424705204752708} a^{4} + \frac{517300904222479259603}{3422424786971413099332} a^{3} + \frac{303217709605437430781}{1140808262323804366444} a^{2} + \frac{956908205583479546275}{3422424786971413099332} a - \frac{5276993720475821645}{28052662188290271306}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11390078611.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T258):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.6.39149684231663.1, 8.8.80798284478113.1, 8.6.3797519370471311.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||