Normalized defining polynomial
\( x^{16} - 6 x^{15} - 68 x^{14} + 410 x^{13} + 1604 x^{12} - 10484 x^{11} - 13138 x^{10} + 150813 x^{9} - 135236 x^{8} - 1496025 x^{7} + 3584534 x^{6} + 9914265 x^{5} - 24578465 x^{4} - 34561989 x^{3} + 53908555 x^{2} + 39677155 x - 20855909 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1398851876803167753769596583695937=47^{2}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{803382453566295156430048899081275859355916539517399191} a^{15} + \frac{144066488622081468528135051593544544685178253923681141}{803382453566295156430048899081275859355916539517399191} a^{14} - \frac{326168214189745186205093923595403279746718265373315136}{803382453566295156430048899081275859355916539517399191} a^{13} + \frac{251379350346465607013620893327706121030252824882011033}{803382453566295156430048899081275859355916539517399191} a^{12} + \frac{57169351595578273376407809661384101436723438262058595}{803382453566295156430048899081275859355916539517399191} a^{11} + \frac{297976660643022899716858605339684576818989542922425963}{803382453566295156430048899081275859355916539517399191} a^{10} + \frac{1000946147344379586192278537953244486626071364695355}{7109579235099957136549105301604211144742624243516807} a^{9} + \frac{370078044661069268628269265652647772639097481392399264}{803382453566295156430048899081275859355916539517399191} a^{8} + \frac{12651787588341106162896158867796160152825692206896765}{803382453566295156430048899081275859355916539517399191} a^{7} - \frac{297106339583669850420554415818824538830730394995412319}{803382453566295156430048899081275859355916539517399191} a^{6} - \frac{271060999590826202948066922654652983084575500112979381}{803382453566295156430048899081275859355916539517399191} a^{5} - \frac{328214133285879907496450627582006358162833305763823361}{803382453566295156430048899081275859355916539517399191} a^{4} - \frac{272678393458966840411550087968824002738197570218023046}{803382453566295156430048899081275859355916539517399191} a^{3} - \frac{371796245760213053665039115825728310585339502895268323}{803382453566295156430048899081275859355916539517399191} a^{2} - \frac{148684314445547512922898710889954296362820058133877356}{803382453566295156430048899081275859355916539517399191} a - \frac{65261815107776510469144683603125536659202676942928572}{803382453566295156430048899081275859355916539517399191}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38504780186.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97 | Data not computed | ||||||