Normalized defining polynomial
\( x^{16} - 6 x^{15} + 63 x^{14} - 100 x^{13} - 5859 x^{12} + 30525 x^{11} - 35277 x^{10} - 472409 x^{9} + 5199015 x^{8} - 6540911 x^{7} - 64725915 x^{6} + 118654269 x^{5} + 202450036 x^{4} - 244482346 x^{3} - 286455995 x^{2} + 18504933 x + 26094979 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1274602568003244304847660149105336749401=31^{10}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $278.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{16204235523355324533161786407091174203735126142204191522557504233} a^{15} + \frac{5505529873774142102196682358104440222190046599192921673187981187}{16204235523355324533161786407091174203735126142204191522557504233} a^{14} + \frac{1035284105991012233945324638994533525411521394384671946136376841}{16204235523355324533161786407091174203735126142204191522557504233} a^{13} + \frac{1896625849604030804580884517165398932397828659136029109023447782}{16204235523355324533161786407091174203735126142204191522557504233} a^{12} + \frac{3458379470229810640447762771612528614651974732716674418329437045}{16204235523355324533161786407091174203735126142204191522557504233} a^{11} + \frac{256002099724468391721400751424045434680069657553546093572975863}{704531979276318457963555930743094530597179397487138761850326271} a^{10} + \frac{7101747739282608949386232387349641250283042553310679993730760964}{16204235523355324533161786407091174203735126142204191522557504233} a^{9} - \frac{1504615170035509776431883850370904280786289446706393946879024608}{16204235523355324533161786407091174203735126142204191522557504233} a^{8} - \frac{5622831602198155873988244641996117219049119714689082192818636815}{16204235523355324533161786407091174203735126142204191522557504233} a^{7} + \frac{6487393274085957287942239875134270038962529679924727336244444056}{16204235523355324533161786407091174203735126142204191522557504233} a^{6} + \frac{1384722485833337890873251757385922664629177285887617607730341401}{16204235523355324533161786407091174203735126142204191522557504233} a^{5} + \frac{7270786561803521795745355577107533451545600792482494118072452482}{16204235523355324533161786407091174203735126142204191522557504233} a^{4} - \frac{3959824836827293903844921426919421278428432938550270676119817433}{16204235523355324533161786407091174203735126142204191522557504233} a^{3} + \frac{32280141836126817416007892950833028109827809900720123547651278}{16204235523355324533161786407091174203735126142204191522557504233} a^{2} - \frac{4752298069515842211475263763623546337805256714704461543957108376}{16204235523355324533161786407091174203735126142204191522557504233} a - \frac{1492974846320519964350555010250687691394606169383102557517041686}{16204235523355324533161786407091174203735126142204191522557504233}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 105585113967000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| 41 | Data not computed | ||||||