Normalized defining polynomial
\( x^{16} - 5 x^{15} - 233 x^{14} + 1346 x^{13} + 18632 x^{12} - 140131 x^{11} - 678393 x^{10} + 7483195 x^{9} + 16528758 x^{8} - 200346915 x^{7} - 387385807 x^{6} + 2180463570 x^{5} + 5102097565 x^{4} - 2559956558 x^{3} - 10822844427 x^{2} - 5205126238 x + 20892667 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1274602568003244304847660149105336749401=31^{10}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $278.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{15} + \frac{2191349033151362515207913876345052526823716980570251772735829247984692468925}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{14} + \frac{2089136833814346746243065496316079478172172113465793846924767731357601822397}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{13} + \frac{1875652229742680775075737353695815125716967847907519676450592059776720862004}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{12} + \frac{47464221053142536962186545925557486926301474136096250707275491063721467555}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{11} - \frac{1774656907130081074461423763065158217614085091475877030912623419000121711403}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{10} + \frac{2149908097586889882406017499711584134214846508768993526075288030616305672486}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{9} - \frac{1162528490591442818404106642860288384903283105855924693896575999852741811704}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{8} - \frac{94660166526285118401000809265011943307974128520107589674955339652000109899}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{7} - \frac{491583858442528336782638581993031902040395448862057602041311300728606497586}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{6} + \frac{1646593885801206249397480898304503362856208826113009084303392061902864764981}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{5} - \frac{1375647034378697901284521733802237905212678876477830880704291791090332561933}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{4} - \frac{107833198569608192288162282348167015725860651360821166421282736970033475603}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{3} - \frac{17842191069257341439781126750172168748611370431633710537085759671226361958}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a^{2} + \frac{1193618620185152432901584597957199378332204402231708060646052273804637804675}{4864001327165085251051352066747889542368095276700848702577534602488619036157} a + \frac{2431115296962797809304812886896536792383111210305853674549082661355271752966}{4864001327165085251051352066747889542368095276700848702577534602488619036157}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 114073970907000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.2 | $x^{4} - 31$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||