Normalized defining polynomial
\( x^{16} - 5 x^{15} + 14 x^{14} - 72 x^{13} - 142 x^{12} + 1665 x^{11} - 1991 x^{10} - 202 x^{9} + 4677 x^{8} - 56356 x^{7} + 68947 x^{6} + 152641 x^{5} - 165890 x^{4} - 125115 x^{3} + 39402 x^{2} + 25446 x + 2807 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1249398643965236330510560517=11^{3}\cdot 97913143^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 97913143$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2164216144553147338105398849408336271237} a^{15} + \frac{874178462480401324558521349528699567671}{2164216144553147338105398849408336271237} a^{14} - \frac{259374294447000291410230329497126554859}{2164216144553147338105398849408336271237} a^{13} - \frac{54495102856703387707400058892827877265}{2164216144553147338105398849408336271237} a^{12} + \frac{531106007311666068182062653541693964451}{2164216144553147338105398849408336271237} a^{11} + \frac{690375757902840855184141157295560865904}{2164216144553147338105398849408336271237} a^{10} - \frac{381624279361693892151192474415208794240}{2164216144553147338105398849408336271237} a^{9} + \frac{646002469656857270266121685646514344397}{2164216144553147338105398849408336271237} a^{8} + \frac{650696096533754071706405347557108703968}{2164216144553147338105398849408336271237} a^{7} + \frac{277375251312355029132292974535772613378}{2164216144553147338105398849408336271237} a^{6} - \frac{331554297215567417402066694101832977222}{2164216144553147338105398849408336271237} a^{5} + \frac{2234730703362944360443229952960133173}{40834266878361270530290544328459174929} a^{4} + \frac{7965828547737477067200475132945014387}{40834266878361270530290544328459174929} a^{3} - \frac{879020761480078038458478670829216133602}{2164216144553147338105398849408336271237} a^{2} - \frac{1080599162313006124397641262705922675549}{2164216144553147338105398849408336271237} a - \frac{937023760905142535781442848742618356973}{2164216144553147338105398849408336271237}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117277765.648 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5160960 |
| The 100 conjugacy class representatives for t16n1946 are not computed |
| Character table for t16n1946 is not computed |
Intermediate fields
| 8.8.1077044573.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | $16$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | $16$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97913143 | Data not computed | ||||||