Normalized defining polynomial
\( x^{16} - 12x^{14} + 16x^{12} + 236x^{10} - 638x^{8} - 908x^{6} + 2944x^{4} - 756x^{2} + 49 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[12, 2]$ |
| |
| Discriminant: |
\(121821863230510940507078656\)
\(\medspace = 2^{50}\cdot 7^{8}\cdot 137^{2}\)
|
| |
| Root discriminant: | \(42.69\) |
| |
| Galois root discriminant: | $2^{115/32}7^{1/2}137^{1/2}\approx 373.8831134106666$ | ||
| Ramified primes: |
\(2\), \(7\), \(137\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4}a^{8}+\frac{1}{4}$, $\frac{1}{4}a^{9}+\frac{1}{4}a$, $\frac{1}{4}a^{10}+\frac{1}{4}a^{2}$, $\frac{1}{4}a^{11}+\frac{1}{4}a^{3}$, $\frac{1}{12}a^{12}-\frac{1}{12}a^{10}+\frac{1}{3}a^{6}-\frac{1}{4}a^{4}-\frac{1}{12}a^{2}-\frac{1}{3}$, $\frac{1}{24}a^{13}-\frac{1}{24}a^{12}+\frac{1}{12}a^{11}-\frac{1}{12}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{8}+\frac{1}{6}a^{7}-\frac{1}{6}a^{6}-\frac{1}{8}a^{5}+\frac{1}{8}a^{4}-\frac{5}{12}a^{3}+\frac{5}{12}a^{2}-\frac{7}{24}a+\frac{1}{24}$, $\frac{1}{591864}a^{14}-\frac{12059}{591864}a^{12}+\frac{21499}{591864}a^{10}+\frac{40927}{591864}a^{8}-\frac{25495}{591864}a^{6}+\frac{157229}{591864}a^{4}-\frac{7351}{197288}a^{2}-\frac{38927}{84552}$, $\frac{1}{4143048}a^{15}+\frac{6301}{2071524}a^{13}-\frac{1}{24}a^{12}-\frac{124359}{1381016}a^{11}-\frac{1}{12}a^{10}-\frac{90511}{2071524}a^{9}-\frac{1}{8}a^{8}-\frac{370193}{1381016}a^{7}-\frac{1}{6}a^{6}-\frac{254309}{2071524}a^{5}+\frac{1}{8}a^{4}-\frac{712561}{4143048}a^{3}+\frac{5}{12}a^{2}-\frac{14121}{98644}a+\frac{1}{24}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{99}{14092}a^{14}-\frac{2155}{42276}a^{12}-\frac{5519}{42276}a^{10}+\frac{14415}{14092}a^{8}+\frac{23573}{42276}a^{6}-\frac{48265}{14092}a^{4}+\frac{38269}{42276}a^{2}-\frac{20015}{42276}$, $\frac{2677}{591864}a^{14}-\frac{25355}{591864}a^{12}-\frac{5951}{591864}a^{10}+\frac{510637}{591864}a^{8}-\frac{777619}{591864}a^{6}-\frac{1984795}{591864}a^{4}+\frac{1776443}{197288}a^{2}-\frac{60653}{84552}$, $\frac{20}{517881}a^{15}-\frac{13801}{1035762}a^{13}+\frac{31823}{345254}a^{11}+\frac{536789}{2071524}a^{9}-\frac{326153}{172627}a^{7}-\frac{1183123}{1035762}a^{5}+\frac{7231349}{1035762}a^{3}-\frac{261819}{98644}a$, $\frac{103009}{2071524}a^{15}-\frac{1244011}{2071524}a^{13}+\frac{553439}{690508}a^{11}+\frac{6196594}{517881}a^{9}-\frac{22002693}{690508}a^{7}-\frac{101269111}{2071524}a^{5}+\frac{303592109}{2071524}a^{3}-\frac{572366}{24661}a$, $\frac{32503}{4143048}a^{15}-\frac{401}{73983}a^{14}-\frac{53423}{1035762}a^{13}+\frac{41485}{591864}a^{12}-\frac{801251}{4143048}a^{11}-\frac{10993}{98644}a^{10}+\frac{568613}{517881}a^{9}-\frac{861787}{591864}a^{8}+\frac{6752051}{4143048}a^{7}+\frac{198295}{49322}a^{6}-\frac{2307161}{517881}a^{5}+\frac{3946561}{591864}a^{4}-\frac{4847341}{1381016}a^{3}-\frac{5490265}{295932}a^{2}+\frac{159139}{147966}a+\frac{69805}{28184}$, $\frac{32503}{4143048}a^{15}+\frac{401}{73983}a^{14}-\frac{53423}{1035762}a^{13}-\frac{41485}{591864}a^{12}-\frac{801251}{4143048}a^{11}+\frac{10993}{98644}a^{10}+\frac{568613}{517881}a^{9}+\frac{861787}{591864}a^{8}+\frac{6752051}{4143048}a^{7}-\frac{198295}{49322}a^{6}-\frac{2307161}{517881}a^{5}-\frac{3946561}{591864}a^{4}-\frac{4847341}{1381016}a^{3}+\frac{5490265}{295932}a^{2}+\frac{159139}{147966}a-\frac{69805}{28184}$, $\frac{38023}{1381016}a^{15}+\frac{7127}{591864}a^{14}-\frac{1348507}{4143048}a^{13}-\frac{74891}{591864}a^{12}+\frac{1559251}{4143048}a^{11}+\frac{9747}{197288}a^{10}+\frac{9133469}{1381016}a^{9}+\frac{1525403}{591864}a^{8}-\frac{67636531}{4143048}a^{7}-\frac{920883}{197288}a^{6}-\frac{39656241}{1381016}a^{5}-\frac{6485939}{591864}a^{4}+\frac{314828635}{4143048}a^{3}+\frac{13383745}{591864}a^{2}-\frac{3145463}{591864}a-\frac{22313}{28184}$, $\frac{4603}{147966}a^{14}-\frac{7498}{24661}a^{12}-\frac{2348}{73983}a^{10}+\frac{914059}{147966}a^{8}-\frac{1298819}{147966}a^{6}-\frac{1874876}{73983}a^{4}+\frac{3486890}{73983}a^{2}-\frac{106891}{21138}$, $\frac{1397}{98644}a^{14}-\frac{33541}{295932}a^{12}-\frac{58307}{295932}a^{10}+\frac{116385}{49322}a^{8}-\frac{116737}{295932}a^{6}-\frac{919071}{98644}a^{4}+\frac{2372761}{295932}a^{2}-\frac{19363}{21138}$, $\frac{150145}{4143048}a^{15}+\frac{2001}{197288}a^{14}-\frac{132575}{345254}a^{13}-\frac{5071}{295932}a^{12}+\frac{779573}{4143048}a^{11}-\frac{362431}{591864}a^{10}+\frac{15995537}{2071524}a^{9}+\frac{47195}{98644}a^{8}-\frac{62014787}{4143048}a^{7}+\frac{5671711}{591864}a^{6}-\frac{16148450}{517881}a^{5}-\frac{115879}{98644}a^{4}+\frac{307459489}{4143048}a^{3}-\frac{19436779}{591864}a^{2}-\frac{3874631}{295932}a+\frac{231661}{42276}$, $\frac{275}{39837}a^{15}-\frac{24727}{591864}a^{14}-\frac{13817}{79674}a^{13}+\frac{179369}{591864}a^{12}+\frac{61153}{79674}a^{11}+\frac{479963}{591864}a^{10}+\frac{134711}{39837}a^{9}-\frac{3761605}{591864}a^{8}-\frac{722570}{39837}a^{7}-\frac{2287751}{591864}a^{6}-\frac{1159759}{79674}a^{5}+\frac{15245665}{591864}a^{4}+\frac{1998895}{26558}a^{3}-\frac{723223}{197288}a^{2}-\frac{76576}{5691}a-\frac{118867}{84552}$, $\frac{12829}{1381016}a^{15}-\frac{4961}{295932}a^{14}-\frac{586577}{4143048}a^{13}+\frac{3629}{49322}a^{12}+\frac{1535123}{4143048}a^{11}+\frac{99787}{147966}a^{10}+\frac{3817587}{1381016}a^{9}-\frac{473393}{295932}a^{8}-\frac{43910777}{4143048}a^{7}-\frac{2644301}{295932}a^{6}-\frac{15468779}{1381016}a^{5}+\frac{808663}{147966}a^{4}+\frac{191496491}{4143048}a^{3}+\frac{4110425}{147966}a^{2}-\frac{4882393}{591864}a-\frac{176071}{42276}$, $\frac{31803}{690508}a^{15}+\frac{2523}{98644}a^{14}-\frac{2249825}{4143048}a^{13}-\frac{60349}{197288}a^{12}+\frac{325447}{517881}a^{11}+\frac{37099}{98644}a^{10}+\frac{15154117}{1381016}a^{9}+\frac{1214817}{197288}a^{8}-\frac{56365105}{2071524}a^{7}-\frac{1536979}{98644}a^{6}-\frac{64556071}{1381016}a^{5}-\frac{5120985}{197288}a^{4}+\frac{130899179}{1035762}a^{3}+\frac{6999221}{98644}a^{2}-\frac{8051635}{591864}a-\frac{240341}{28184}$
|
| |
| Regulator: | \( 61882651.1808 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{2}\cdot 61882651.1808 \cdot 1}{2\cdot\sqrt{121821863230510940507078656}}\cr\approx \mathstrut & 0.453310711887 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr D_4$ (as 16T1439):
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for $C_2\wr D_4$ |
| Character table for $C_2\wr D_4$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{2}, \sqrt{7})\), 8.8.86228860928.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.50h1.45 | $x^{16} + 2 x^{12} + 8 x^{11} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 x^{3} + 2$ | $16$ | $1$ | $50$ | 16T345 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$$ |
|
\(7\)
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(137\)
| $\Q_{137}$ | $x + 134$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{137}$ | $x + 134$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{137}$ | $x + 134$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{137}$ | $x + 134$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 137.2.1.0a1.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 137.1.2.1a1.1 | $x^{2} + 137$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 137.2.1.0a1.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 137.2.1.0a1.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 137.1.2.1a1.1 | $x^{2} + 137$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 137.2.1.0a1.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |