Normalized defining polynomial
\( x^{16} - 4 x^{15} - 235 x^{14} - 518 x^{13} + 14110 x^{12} + 180490 x^{11} + 576156 x^{10} - 8926458 x^{9} - 48291565 x^{8} + 162030550 x^{7} + 905586480 x^{6} - 924037993 x^{5} - 6692210494 x^{4} + 1795154696 x^{3} + 19605075113 x^{2} - 511640977 x - 18891513523 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(121398883921746872662013204631882371288461633=61^{8}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $569.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{811} a^{14} - \frac{43}{811} a^{13} + \frac{381}{811} a^{12} + \frac{239}{811} a^{11} + \frac{371}{811} a^{10} + \frac{30}{811} a^{9} - \frac{309}{811} a^{8} - \frac{96}{811} a^{7} + \frac{135}{811} a^{6} + \frac{131}{811} a^{5} - \frac{381}{811} a^{4} - \frac{51}{811} a^{3} + \frac{36}{811} a^{2} - \frac{300}{811} a + \frac{308}{811}$, $\frac{1}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{15} + \frac{16635247644691504646400057385838307301556821407202603046977928891748}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{14} - \frac{12917669025915286192565034142857687641281723881879510884594740283063838}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{13} - \frac{6619570954426066965600358755432613438909828766686045401666153425740024}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{12} + \frac{23629010822688670753110420328779886966793820495128259404094201955122413}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{11} + \frac{24397596719024091609610427873227173450010727544092166351282559924129548}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{10} - \frac{3146802563827540331982579519919341266420190384804844533878672315897846}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{9} + \frac{16568623955944672802638243661699293669777228340303019149141190661086051}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{8} - \frac{6896464813912709879503008358127623965995422296944419089836305584108574}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{7} - \frac{16961412360247124360153123291364124572661590318508963810608229822501302}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{6} - \frac{14227873013702559664044770518188125401213615631518911851588849893501221}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{5} + \frac{9997885316925857628965661257892954078385732863037404324781256321577534}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{4} + \frac{9503642621134623404580788254841667908007500252881185204415398696241538}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{3} - \frac{15317591946273581607262644409988387880094361401684980271554233229445392}{51977817079696877892693713301339089159696684212734717276998302039227917} a^{2} - \frac{5478808574940934666007846854034192103873225635047623037114155542011787}{51977817079696877892693713301339089159696684212734717276998302039227917} a + \frac{16958073071079761791112094415483083702795875649556953966471991478887452}{51977817079696877892693713301339089159696684212734717276998302039227917}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3053510576340000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.1118720199956720578033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||