Normalized defining polynomial
\( x^{16} - 2 x^{15} - 73 x^{14} + 136 x^{13} + 2119 x^{12} - 3558 x^{11} - 31582 x^{10} + 45135 x^{9} + 258825 x^{8} - 279513 x^{7} - 1159099 x^{6} + 677252 x^{5} + 2696351 x^{4} + 147768 x^{3} - 2970765 x^{2} - 1286813 x + 252041 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12070942770246634791690899381881=43^{2}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{5}{12} a^{7} - \frac{5}{12} a^{6} + \frac{1}{6} a^{5} - \frac{5}{12} a^{4} + \frac{1}{4} a^{3} - \frac{1}{12} a^{2} - \frac{5}{12} a - \frac{5}{12}$, $\frac{1}{12} a^{13} - \frac{1}{4} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a + \frac{1}{12}$, $\frac{1}{1236} a^{14} - \frac{7}{618} a^{13} - \frac{25}{618} a^{12} - \frac{5}{412} a^{11} - \frac{5}{206} a^{10} + \frac{71}{412} a^{9} - \frac{31}{309} a^{8} - \frac{55}{206} a^{7} - \frac{29}{309} a^{6} + \frac{46}{103} a^{5} - \frac{41}{1236} a^{4} - \frac{211}{1236} a^{3} - \frac{467}{1236} a^{2} + \frac{28}{309} a + \frac{5}{12}$, $\frac{1}{1376654722282460135521486512876} a^{15} - \frac{46842267513554745319479238}{344163680570615033880371628219} a^{14} - \frac{7533830944744229429421276745}{688327361141230067760743256438} a^{13} + \frac{6979232982591361299229297343}{688327361141230067760743256438} a^{12} + \frac{51134671740974503750614744715}{458884907427486711840495504292} a^{11} + \frac{44595362960218964133389515223}{1376654722282460135521486512876} a^{10} - \frac{3689015996308398453750968729}{344163680570615033880371628219} a^{9} - \frac{29828769542335837469653841177}{229442453713743355920247752146} a^{8} - \frac{258159937468127866003811838067}{1376654722282460135521486512876} a^{7} + \frac{639405232164039554772706850191}{1376654722282460135521486512876} a^{6} - \frac{244176712443052951977162304691}{1376654722282460135521486512876} a^{5} + \frac{23670287184938731222725484477}{688327361141230067760743256438} a^{4} - \frac{282723940771976850611443024513}{688327361141230067760743256438} a^{3} - \frac{234843019512816723859490163631}{1376654722282460135521486512876} a^{2} + \frac{200610342979086025516918050005}{688327361141230067760743256438} a - \frac{1135780748672738189798276159}{13365579827985049859431907892}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3004757826.11 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T258):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.6.3474326232558859.1, 8.8.80798284478113.1, 8.6.35817796211947.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||