Normalized defining polynomial
\( x^{16} - 5 x^{15} - 58 x^{14} + 416 x^{13} - 277 x^{12} - 5200 x^{11} + 33906 x^{10} - 136300 x^{9} + 291294 x^{8} - 199352 x^{7} - 244894 x^{6} + 520392 x^{5} - 367938 x^{4} - 167467 x^{3} + 328416 x^{2} + 61588 x - 13969 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1170881448713923574794017240042457=43^{2}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{97321826053571554890899658476669146465673} a^{15} - \frac{10511714211290174021196294005618362198004}{97321826053571554890899658476669146465673} a^{14} - \frac{25330425093373308042841497016520617378631}{97321826053571554890899658476669146465673} a^{13} + \frac{5131722508157928012913708605371171071263}{97321826053571554890899658476669146465673} a^{12} - \frac{21376930732845786422655641913120394725019}{97321826053571554890899658476669146465673} a^{11} - \frac{6194442456867522211557944472194914077355}{97321826053571554890899658476669146465673} a^{10} + \frac{35135792322663403009629291409598149947485}{97321826053571554890899658476669146465673} a^{9} - \frac{37469914403249194192113300519237613873264}{97321826053571554890899658476669146465673} a^{8} + \frac{28131088404454820211323400201760160210141}{97321826053571554890899658476669146465673} a^{7} + \frac{10142780047058387273573760385208719610882}{97321826053571554890899658476669146465673} a^{6} - \frac{47573578091022577990210162356744240942349}{97321826053571554890899658476669146465673} a^{5} + \frac{12236312625534911022543267519919173922154}{97321826053571554890899658476669146465673} a^{4} + \frac{44089052282751216319960509041338460529381}{97321826053571554890899658476669146465673} a^{3} + \frac{23885669122025627850349693318749577377349}{97321826053571554890899658476669146465673} a^{2} + \frac{8667028292851212408287579219778976426627}{97321826053571554890899658476669146465673} a - \frac{26216515392107906848769657809551748466501}{97321826053571554890899658476669146465673}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31705384392.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||