Properties

Label 16.12.1151434223...9792.1
Degree $16$
Signature $[12, 2]$
Discriminant $2^{67}\cdot 17^{6}\cdot 23^{2}\cdot 7817^{2}$
Root discriminant $239.24$
Ramified primes $2, 17, 23, 7817$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1113

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![74734946110472, 0, -12587964743712, 0, 503537363856, 0, 4519999040, 0, -448461620, 0, 6285536, 0, -17164, 0, -192, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 192*x^14 - 17164*x^12 + 6285536*x^10 - 448461620*x^8 + 4519999040*x^6 + 503537363856*x^4 - 12587964743712*x^2 + 74734946110472)
 
gp: K = bnfinit(x^16 - 192*x^14 - 17164*x^12 + 6285536*x^10 - 448461620*x^8 + 4519999040*x^6 + 503537363856*x^4 - 12587964743712*x^2 + 74734946110472, 1)
 

Normalized defining polynomial

\( x^{16} - 192 x^{14} - 17164 x^{12} + 6285536 x^{10} - 448461620 x^{8} + 4519999040 x^{6} + 503537363856 x^{4} - 12587964743712 x^{2} + 74734946110472 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(115143422370815907323395348998014369792=2^{67}\cdot 17^{6}\cdot 23^{2}\cdot 7817^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $239.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 23, 7817$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{29001801781585276398238109703585830999283664988} a^{14} - \frac{3286200574833068299349298548527037359402683093}{29001801781585276398238109703585830999283664988} a^{12} + \frac{1290381655671671754389229615463127096980334479}{7250450445396319099559527425896457749820916247} a^{10} + \frac{3494763526476983970628566989885058051497027439}{14500900890792638199119054851792915499641832494} a^{8} - \frac{2693319003651324181479229401835204718599274045}{14500900890792638199119054851792915499641832494} a^{6} - \frac{2975103112539747011159970177398960734776188435}{7250450445396319099559527425896457749820916247} a^{4} - \frac{1750344174595129042975275347451893746882507441}{7250450445396319099559527425896457749820916247} a^{2} - \frac{838861569189666454421616848137327289288}{2372182617724540651141514126008551023401}$, $\frac{1}{29001801781585276398238109703585830999283664988} a^{15} - \frac{3286200574833068299349298548527037359402683093}{29001801781585276398238109703585830999283664988} a^{13} - \frac{2088923822709632082002608964043949361899578331}{29001801781585276398238109703585830999283664988} a^{11} + \frac{3494763526476983970628566989885058051497027439}{14500900890792638199119054851792915499641832494} a^{9} - \frac{2693319003651324181479229401835204718599274045}{14500900890792638199119054851792915499641832494} a^{7} - \frac{2975103112539747011159970177398960734776188435}{7250450445396319099559527425896457749820916247} a^{5} - \frac{1750344174595129042975275347451893746882507441}{7250450445396319099559527425896457749820916247} a^{3} - \frac{838861569189666454421616848137327289288}{2372182617724540651141514126008551023401} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 94042306656400 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1113:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 49 conjugacy class representatives for t16n1113
Character table for t16n1113 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.4352.1, 8.8.9697230848.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16$ $16$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ R $16$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$17$17.4.2.2$x^{4} - 17 x^{2} + 867$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.4.2.2$x^{4} - 23 x^{2} + 3703$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
23.8.0.1$x^{8} + x^{2} - 2 x + 5$$1$$8$$0$$C_8$$[\ ]^{8}$
7817Data not computed