Normalized defining polynomial
\( x^{16} - 50 x^{14} - 19303 x^{12} + 1539640 x^{10} - 42903454 x^{8} + 497016410 x^{6} - 1747851460 x^{4} - 4458422800 x^{2} + 25951599025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112309106399498694797369730826240000000000=2^{24}\cdot 5^{10}\cdot 71^{8}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $367.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 71, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{8} + \frac{1}{10} a^{6} - \frac{1}{5} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{9} + \frac{1}{10} a^{7} - \frac{1}{5} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{60} a^{12} - \frac{1}{20} a^{11} + \frac{1}{60} a^{10} - \frac{3}{20} a^{9} - \frac{1}{12} a^{8} - \frac{3}{10} a^{7} - \frac{3}{20} a^{6} + \frac{1}{10} a^{5} - \frac{11}{60} a^{4} + \frac{1}{4} a^{3} + \frac{1}{3} a^{2} + \frac{5}{12}$, $\frac{1}{660} a^{13} + \frac{1}{30} a^{11} - \frac{38}{165} a^{9} - \frac{1}{4} a^{8} + \frac{49}{220} a^{7} + \frac{1}{4} a^{6} - \frac{53}{660} a^{5} - \frac{1}{2} a^{4} + \frac{31}{132} a^{3} - \frac{1}{2} a^{2} - \frac{61}{132} a + \frac{1}{4}$, $\frac{1}{13261756166835867615634170717300} a^{14} - \frac{680503442709902686194868}{467292324412821269049829835} a^{12} - \frac{4926194265570781279246919824}{1105146347236322301302847559775} a^{10} - \frac{1}{4} a^{9} - \frac{422842307109415438757781236327}{2652351233367173523126834143460} a^{8} + \frac{1}{4} a^{7} + \frac{3768650783412929691340935430891}{13261756166835867615634170717300} a^{6} - \frac{1}{2} a^{5} + \frac{128249580615699449949871216249}{530470246673434704625366828692} a^{4} - \frac{1}{2} a^{3} - \frac{11388853510346563715256414691}{26260903300665084387394397460} a^{2} + \frac{1}{4} a + \frac{14592807667772190418789313}{119367742275750383579065443}$, $\frac{1}{384590928838240160853390950801700} a^{15} + \frac{609296026959096199380900481}{894397508926139908961374304190} a^{13} - \frac{4229113285091449432626302246089}{192295464419120080426695475400850} a^{11} - \frac{1}{20} a^{10} + \frac{5142321889751473831127322346379}{25639395255882677390226063386780} a^{9} - \frac{3}{20} a^{8} + \frac{30533285956481680697438989060351}{384590928838240160853390950801700} a^{7} - \frac{3}{10} a^{6} + \frac{4412198693902679716091091211595}{15383637153529606434135638032068} a^{5} + \frac{1}{10} a^{4} + \frac{276126222735983560921519711}{2387354845515007671581308860} a^{3} + \frac{1}{4} a^{2} + \frac{4005905539023344065597949927}{12692769928654790787240625439} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 439443732833000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{355}) \), \(\Q(\sqrt{71}) \), 4.4.203656400.1, 4.4.2525.1, \(\Q(\sqrt{5}, \sqrt{71})\), 8.8.41475929260960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71 | Data not computed | ||||||
| 101 | Data not computed | ||||||