Normalized defining polynomial
\( x^{16} - 310 x^{14} + 25877 x^{12} - 67600 x^{10} - 32992534 x^{8} + 166231270 x^{6} + 8646624140 x^{4} - 39508786100 x^{2} + 25951599025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112309106399498694797369730826240000000000=2^{24}\cdot 5^{10}\cdot 71^{8}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $367.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 71, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{60} a^{12} - \frac{1}{4} a^{11} + \frac{1}{12} a^{10} - \frac{1}{4} a^{9} + \frac{7}{60} a^{8} + \frac{1}{4} a^{6} - \frac{29}{60} a^{4} + \frac{1}{4} a^{3} - \frac{1}{3} a^{2} + \frac{5}{12}$, $\frac{1}{60} a^{13} - \frac{1}{6} a^{11} - \frac{2}{15} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{29}{60} a^{5} - \frac{1}{12} a^{3} + \frac{5}{12} a + \frac{1}{4}$, $\frac{1}{17784224021046206269121323001744279100} a^{14} + \frac{2857552701579531020288852560840157}{355684480420924125382426460034885582} a^{12} - \frac{12395471189792966666023427553286327}{523065412383711949091803617698361150} a^{10} - \frac{1}{4} a^{9} - \frac{294310034898274411780437334971399221}{3556844804209241253824264600348855820} a^{8} - \frac{1}{4} a^{7} - \frac{5541196565514847930563793735469756999}{17784224021046206269121323001744279100} a^{6} + \frac{92692082062383391272938959174321977}{1185614934736413751274754866782951940} a^{4} + \frac{3036552629316573437321434344091253}{11738761730063502487868860067157940} a^{2} + \frac{1}{4} a - \frac{1491416650408328477268010370288467}{3521628519019050746360658020147382}$, $\frac{1}{5673167462713739799849702037556425032900} a^{15} - \frac{646373108701868501160537471608943253}{226926698508549591993988081502257001316} a^{13} + \frac{4483447054031964413038302671467623374}{83428933275202055880142677022888603425} a^{11} - \frac{1}{4} a^{10} - \frac{8595010377243723354729222323601621977}{378211164180915986656646802503761668860} a^{9} + \frac{39466933767227315923881245261407784363}{2836583731356869899924851018778212516450} a^{7} + \frac{1}{4} a^{6} + \frac{246598742681425583633149076371267617493}{567316746271373979984970203755642503290} a^{5} - \frac{21062522806686647946579877939583333}{510636135257762358222295412921370390} a^{3} + \frac{1}{4} a^{2} - \frac{323614579314850812359774511092583029}{748932998378051458726033272284676572} a - \frac{1}{4}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 527883930962000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{355}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{71}) \), 4.4.203656400.1, 4.4.2525.1, \(\Q(\sqrt{5}, \sqrt{71})\), 8.8.41475929260960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71 | Data not computed | ||||||
| 101 | Data not computed | ||||||