\\ Pari/GP code for working with number field 16.12.10704914143082750935040000000000.2. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^16 - 4*y^15 - 44*y^14 + 144*y^13 - 773*y^12 + 660*y^11 + 57384*y^10 - 56564*y^9 - 510761*y^8 + 993092*y^7 - 9940324*y^6 - 29825900*y^5 + 170611937*y^4 + 450315088*y^3 - 514469646*y^2 - 2050188192*y - 1309532249, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 4*x^15 - 44*x^14 + 144*x^13 - 773*x^12 + 660*x^11 + 57384*x^10 - 56564*x^9 - 510761*x^8 + 993092*x^7 - 9940324*x^6 - 29825900*x^5 + 170611937*x^4 + 450315088*x^3 - 514469646*x^2 - 2050188192*x - 1309532249, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])