Normalized defining polynomial
\( x^{16} - 4 x^{15} - 44 x^{14} + 144 x^{13} - 773 x^{12} + 660 x^{11} + 57384 x^{10} - 56564 x^{9} - 510761 x^{8} + 993092 x^{7} - 9940324 x^{6} - 29825900 x^{5} + 170611937 x^{4} + 450315088 x^{3} - 514469646 x^{2} - 2050188192 x - 1309532249 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10704914143082750935040000000000=2^{32}\cdot 5^{10}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{105} a^{14} - \frac{2}{21} a^{13} - \frac{1}{35} a^{12} + \frac{37}{105} a^{11} + \frac{4}{15} a^{10} - \frac{22}{105} a^{9} + \frac{32}{105} a^{8} + \frac{26}{105} a^{7} + \frac{2}{15} a^{6} + \frac{11}{35} a^{5} + \frac{3}{7} a^{4} - \frac{2}{15} a^{3} + \frac{47}{105} a^{2} + \frac{13}{35} a - \frac{1}{21}$, $\frac{1}{1821017502937407874763898551381897817879611013309900012195} a^{15} - \frac{2046970736397132953842068520501901184977302041960649266}{607005834312469291587966183793965939293203671103300004065} a^{14} - \frac{9784211281990644485063432514094647570584349292229043844}{1821017502937407874763898551381897817879611013309900012195} a^{13} + \frac{132859761979874504696039612881776068676698361191904428809}{1821017502937407874763898551381897817879611013309900012195} a^{12} + \frac{719042930326631733728023881166270859695165228209003078872}{1821017502937407874763898551381897817879611013309900012195} a^{11} - \frac{264314725070562550121523669988551030840329292860762731503}{607005834312469291587966183793965939293203671103300004065} a^{10} + \frac{227065881826156827574087048860772543143709846964290787827}{1821017502937407874763898551381897817879611013309900012195} a^{9} + \frac{696976069412653158951156479005203581454508181999271976699}{1821017502937407874763898551381897817879611013309900012195} a^{8} - \frac{248870050538642146521819262785939220968765170089890948584}{1821017502937407874763898551381897817879611013309900012195} a^{7} + \frac{44282755180049041023334096164695459380497151231874572139}{1821017502937407874763898551381897817879611013309900012195} a^{6} + \frac{14082458491473646634634530779950688257083960001501149546}{86715119187495613083995169113423705613314810157614286295} a^{5} + \frac{74676084299049851834481990619428423656702862223758574576}{1821017502937407874763898551381897817879611013309900012195} a^{4} + \frac{24262403277107819785603851240361868695158584937962822205}{121401166862493858317593236758793187858640734220660000813} a^{3} + \frac{848684018554502942413483907478839188188225295492606341101}{1821017502937407874763898551381897817879611013309900012195} a^{2} - \frac{124054536469442444825115822034677756840122746104776632117}{364203500587481574952779710276379563575922202661980002439} a + \frac{241791544879306889240866468926859992093857494530616394473}{1821017502937407874763898551381897817879611013309900012195}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11780595119.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 65 conjugacy class representatives for t16n1360 are not computed |
| Character table for t16n1360 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 761 | Data not computed | ||||||