Properties

Label 16.12.1070491414...0000.1
Degree $16$
Signature $[12, 2]$
Discriminant $2^{32}\cdot 5^{10}\cdot 761^{5}$
Root discriminant $86.97$
Ramified primes $2, 5, 761$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1360

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![18421911, 22581108, -28910620, -37161060, 6980273, 13170272, -847870, -1676940, 131044, 53604, -5638, 1944, -434, 44, 8, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 8*x^14 + 44*x^13 - 434*x^12 + 1944*x^11 - 5638*x^10 + 53604*x^9 + 131044*x^8 - 1676940*x^7 - 847870*x^6 + 13170272*x^5 + 6980273*x^4 - 37161060*x^3 - 28910620*x^2 + 22581108*x + 18421911)
 
gp: K = bnfinit(x^16 - 8*x^15 + 8*x^14 + 44*x^13 - 434*x^12 + 1944*x^11 - 5638*x^10 + 53604*x^9 + 131044*x^8 - 1676940*x^7 - 847870*x^6 + 13170272*x^5 + 6980273*x^4 - 37161060*x^3 - 28910620*x^2 + 22581108*x + 18421911, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 8 x^{14} + 44 x^{13} - 434 x^{12} + 1944 x^{11} - 5638 x^{10} + 53604 x^{9} + 131044 x^{8} - 1676940 x^{7} - 847870 x^{6} + 13170272 x^{5} + 6980273 x^{4} - 37161060 x^{3} - 28910620 x^{2} + 22581108 x + 18421911 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10704914143082750935040000000000=2^{32}\cdot 5^{10}\cdot 761^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $86.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 761$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{413010646926723534992766306772765896343365993193213881} a^{15} + \frac{10034464906670197696988587699468780227706401925859923}{413010646926723534992766306772765896343365993193213881} a^{14} - \frac{13505634242588214877900705495367242204902414535514614}{413010646926723534992766306772765896343365993193213881} a^{13} + \frac{52461859627131889605551490589570670629882894353799100}{413010646926723534992766306772765896343365993193213881} a^{12} - \frac{70056765820615394354022609491667160950962491807065065}{413010646926723534992766306772765896343365993193213881} a^{11} - \frac{12507614947135978142836467077478471830982078352012909}{45890071880747059443640700752529544038151777021468209} a^{10} - \frac{23397199694310948377736274668715607350468697141234896}{413010646926723534992766306772765896343365993193213881} a^{9} + \frac{4671239320504823636624084302316445193786550810042854}{45890071880747059443640700752529544038151777021468209} a^{8} + \frac{164190976714133429250562102942493589407122159482417595}{413010646926723534992766306772765896343365993193213881} a^{7} + \frac{22516289650518715605356162160127247530046100139740511}{137670215642241178330922102257588632114455331064404627} a^{6} - \frac{75435556049097348143197686205457744774014162045289131}{413010646926723534992766306772765896343365993193213881} a^{5} + \frac{105379693510337953954192228529346938879768568312574028}{413010646926723534992766306772765896343365993193213881} a^{4} + \frac{98980848395008401384337964363332645600416089307165389}{413010646926723534992766306772765896343365993193213881} a^{3} + \frac{40304423163363445075129150914230263351737890190658069}{137670215642241178330922102257588632114455331064404627} a^{2} + \frac{143047396092807608112657098184350382578927724693586616}{413010646926723534992766306772765896343365993193213881} a - \frac{20223797810970227247239731292996487574649028776991503}{45890071880747059443640700752529544038151777021468209}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 11321251365.7 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1360:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 65 conjugacy class representatives for t16n1360 are not computed
Character table for t16n1360 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
761Data not computed