Properties

Label 16.10.7964126279...6875.1
Degree $16$
Signature $[10, 3]$
Discriminant $-\,5^{8}\cdot 19^{4}\cdot 103^{4}\cdot 139$
Root discriminant $20.25$
Ramified primes $5, 19, 103, 139$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1759

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -24, 14, 118, -84, -232, 200, 207, -231, -56, 137, -39, -25, 24, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 24*x^14 - 25*x^13 - 39*x^12 + 137*x^11 - 56*x^10 - 231*x^9 + 207*x^8 + 200*x^7 - 232*x^6 - 84*x^5 + 118*x^4 + 14*x^3 - 24*x^2 - 2*x + 1)
 
gp: K = bnfinit(x^16 - 8*x^15 + 24*x^14 - 25*x^13 - 39*x^12 + 137*x^11 - 56*x^10 - 231*x^9 + 207*x^8 + 200*x^7 - 232*x^6 - 84*x^5 + 118*x^4 + 14*x^3 - 24*x^2 - 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 24 x^{14} - 25 x^{13} - 39 x^{12} + 137 x^{11} - 56 x^{10} - 231 x^{9} + 207 x^{8} + 200 x^{7} - 232 x^{6} - 84 x^{5} + 118 x^{4} + 14 x^{3} - 24 x^{2} - 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-796412627902085546875=-\,5^{8}\cdot 19^{4}\cdot 103^{4}\cdot 139\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.25$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 103, 139$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5053409} a^{15} - \frac{1081886}{5053409} a^{14} - \frac{1930648}{5053409} a^{13} + \frac{54949}{5053409} a^{12} + \frac{189215}{5053409} a^{11} + \frac{999548}{5053409} a^{10} + \frac{107528}{5053409} a^{9} + \frac{2350774}{5053409} a^{8} - \frac{1312299}{5053409} a^{7} + \frac{2265990}{5053409} a^{6} + \frac{204855}{5053409} a^{5} - \frac{759261}{5053409} a^{4} + \frac{1192735}{5053409} a^{3} - \frac{714757}{5053409} a^{2} + \frac{2175033}{5053409} a - \frac{451126}{5053409}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 41772.735282 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1759:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12288
The 93 conjugacy class representatives for t16n1759 are not computed
Character table for t16n1759 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.1957.1, 8.8.2393655625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
$103$103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.4.2.1$x^{4} + 927 x^{2} + 265225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
103.4.2.1$x^{4} + 927 x^{2} + 265225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
103.4.0.1$x^{4} - x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
$139$139.2.1.2$x^{2} + 556$$2$$1$$1$$C_2$$[\ ]_{2}$
139.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
139.3.0.1$x^{3} - x + 5$$1$$3$$0$$C_3$$[\ ]^{3}$
139.3.0.1$x^{3} - x + 5$$1$$3$$0$$C_3$$[\ ]^{3}$
139.6.0.1$x^{6} - x + 21$$1$$6$$0$$C_6$$[\ ]^{6}$