Normalized defining polynomial
\( x^{16} - 2 x^{15} - 35 x^{14} + 98 x^{13} + 284 x^{12} - 1346 x^{11} + 1119 x^{10} + 3286 x^{9} - 13412 x^{8} + 24976 x^{7} - 12710 x^{6} - 39068 x^{5} + 63642 x^{4} - 14482 x^{3} - 30961 x^{2} + 17114 x - 2311 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-652030299991134977060343848687=-\,17^{12}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{8} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6}$, $\frac{1}{44838} a^{14} + \frac{847}{14946} a^{13} - \frac{91}{14946} a^{12} + \frac{935}{44838} a^{11} - \frac{281}{14946} a^{10} + \frac{766}{22419} a^{9} - \frac{5155}{22419} a^{8} - \frac{10745}{44838} a^{7} - \frac{82}{423} a^{6} - \frac{1559}{44838} a^{5} + \frac{3938}{22419} a^{4} - \frac{10213}{44838} a^{3} - \frac{3145}{14946} a^{2} - \frac{6713}{14946} a + \frac{6820}{22419}$, $\frac{1}{2188830969309219017378922} a^{15} + \frac{4987440526321850821}{1094415484654609508689461} a^{14} + \frac{1427443044856681535287}{81067813678119222865886} a^{13} - \frac{98463762910645018093603}{2188830969309219017378922} a^{12} + \frac{134285313835523532422779}{2188830969309219017378922} a^{11} - \frac{141175690434852065333299}{2188830969309219017378922} a^{10} - \frac{145453659387862608900679}{2188830969309219017378922} a^{9} + \frac{18289161569590806031157}{81067813678119222865886} a^{8} - \frac{184446538686322820573609}{2188830969309219017378922} a^{7} - \frac{702484597579417321409833}{2188830969309219017378922} a^{6} - \frac{88159825007667501805940}{364805161551536502896487} a^{5} - \frac{404352544376055316315249}{1094415484654609508689461} a^{4} - \frac{310507652217684727916579}{2188830969309219017378922} a^{3} - \frac{320289069727951015189859}{729610323103073005792974} a^{2} - \frac{69053870733229957580342}{1094415484654609508689461} a - \frac{426710562374337336433624}{1094415484654609508689461}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1257077823.15 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.6.2506034826287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 47 | Data not computed | ||||||