Properties

Label 16.10.6462777267...3392.1
Degree $16$
Signature $[10, 3]$
Discriminant $-\,2^{32}\cdot 3^{8}\cdot 47^{5}$
Root discriminant $23.08$
Ramified primes $2, 3, 47$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T905

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-47, 180, -82, -404, 331, 516, -518, -308, 243, 212, -14, -152, 11, 44, -8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 8*x^14 + 44*x^13 + 11*x^12 - 152*x^11 - 14*x^10 + 212*x^9 + 243*x^8 - 308*x^7 - 518*x^6 + 516*x^5 + 331*x^4 - 404*x^3 - 82*x^2 + 180*x - 47)
 
gp: K = bnfinit(x^16 - 4*x^15 - 8*x^14 + 44*x^13 + 11*x^12 - 152*x^11 - 14*x^10 + 212*x^9 + 243*x^8 - 308*x^7 - 518*x^6 + 516*x^5 + 331*x^4 - 404*x^3 - 82*x^2 + 180*x - 47, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 8 x^{14} + 44 x^{13} + 11 x^{12} - 152 x^{11} - 14 x^{10} + 212 x^{9} + 243 x^{8} - 308 x^{7} - 518 x^{6} + 516 x^{5} + 331 x^{4} - 404 x^{3} - 82 x^{2} + 180 x - 47 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-6462777267256811323392=-\,2^{32}\cdot 3^{8}\cdot 47^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.08$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{6}{13} a^{12} - \frac{6}{13} a^{11} + \frac{1}{13} a^{10} - \frac{4}{13} a^{9} - \frac{2}{13} a^{8} + \frac{1}{13} a^{7} - \frac{4}{13} a^{6} + \frac{3}{13} a^{5} + \frac{6}{13} a^{4} + \frac{5}{13} a^{2} + \frac{6}{13} a + \frac{4}{13}$, $\frac{1}{51399454847} a^{15} - \frac{1359897960}{51399454847} a^{14} + \frac{24798272896}{51399454847} a^{13} + \frac{22170283068}{51399454847} a^{12} + \frac{7049057644}{51399454847} a^{11} - \frac{13474886863}{51399454847} a^{10} - \frac{7894732490}{51399454847} a^{9} + \frac{23872495398}{51399454847} a^{8} - \frac{8250225772}{51399454847} a^{7} + \frac{12133340658}{51399454847} a^{6} + \frac{5932100243}{51399454847} a^{5} + \frac{14600152238}{51399454847} a^{4} + \frac{10144819482}{51399454847} a^{3} + \frac{24532541066}{51399454847} a^{2} + \frac{143674872}{3953804219} a - \frac{1219946631}{51399454847}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 121813.144331 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T905:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 44 conjugacy class representatives for t16n905
Character table for t16n905 is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}, \sqrt{3})\), 8.6.249495552.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$47$$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.4.2.1$x^{4} + 1175 x^{2} + 373321$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
47.4.2.1$x^{4} + 1175 x^{2} + 373321$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$